首页|基于多尺度卷积残差遥感图像超分重建研究

基于多尺度卷积残差遥感图像超分重建研究

扫码查看
针对现有遥感图像超分辨率重建技术在纹理细节恢复、伪影抑制和模型收敛等方面存在的问题,提出一种基于生成对抗网络的超分模型RS-SRGAN(Residual-SN-SimAM SRGAN).首先,在生成器中应用多尺度卷积的密集剩余残差卷积块(Residual-in-Residual Density Conv Block,RRDCB)进行深层特征提取,更好地恢复图像细节,同时去除批归一化(BN)提高模型的泛化能力.然后,在判别器中引入自适应归一化(SN)层替代传统的BN层,使网络能够自适应地提取图像特征,并加速模型的收敛.最后,通过集成无参的SimAM注意力机制,增强判别器捕获和理解图像中的关键局部细节能力,在不额外增加参数的基础上有效提高模型的鉴别能力,进一步提高图像的生成质量.实验结果表明,与原始的SRGAN相比,改进的模型在UCMLU和NWPU数据集上的峰值信噪比(PSNR)分别提升了 1.075 4 dB和0.349 2 dB,结构相似性(SSIM)分别提升了 0.004 9和0.007 0.该研究为遥感图像超分辨率的研究和应用提供了新的视角和技术基础.
Research on Super Resolution Reconstruction of Remote Sensing Images Based on Multi-scale Convolutional Residuals
Aiming at the problems of existing remote sensing image super resolution(SR)reconstruction techniques in texture detail recovery,artifact suppression,and model convergence,an improved model based on a generative adversarial network,RS-SRGAN(Residual-SN-SimAM SRGAN)is proposed.Firstly,a dense residual convolution block(Residual-in-Residual Density Conv Block,RRDCB)with multi-scale convolution is applied to the generator for deep feature extraction to better recover the image details,while re-moving the batch normalization(BN)to improve the generalization ability of the model.Then,an adaptive normalization(SN)layer is introduced into the discriminator to replace the traditional BN layer,enabling the network to adaptively extract image features and accelerating the convergence of the model.Finally,by integrating the parameter-free SimAM attention mechanism,the discriminator is enhanced to capture and understand the key local details in the image,which effectively improves the discriminative ability of the model without additional parameters and further improves the quality of image generation.The experimental results show that compared with the original SRGAN,the improved model improves the peak signal-to-noise ratio(PSNR)by 1.075 4 dB and 0.349 2 dB on the UCMLU and NWPU datasets,respectively,and the structural similarity(SSIM)by 0.004 9 and 0.007 0,respectively.This study provides new research and application of the super-resolution of remote sensing images with a new perspective and technical basis.

remote sensing imagessuper resolutiongenerative adversarial networksadaptive normalizationattention mechanism

张剑飞、屠艳杰

展开 >

黑龙江科技大学计算机与信息工程学院,黑龙江哈尔滨 150022

遥感图像 超分辨率 生成对抗网络 自适应归一化 注意力机制

国家自然科学基金黑龙江省哲学社会科学研究规划项目

6180314823YSD245

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(8)