首页|基于路径类比推理的药物重定位方法

基于路径类比推理的药物重定位方法

扫码查看
传统药物研发模式有着费用昂贵、效率低下、时间周期较长等问题,而药物重定位方法为降低成本、提高效率、缩短时间提供了一种可行的选择。目前已经提出了许多利用知识图谱进行药物重定位的方法,并取得相对可观的成果,但它们存在涉及限制数据集范围、处理的关系较单一,且不考虑节点间路径信息等局限。为弥补这些不足,该文提出了一种基于路径类比推理的药物重定位方法。首先,整合多个生物数据集构建异构信息网络。其次,对多种知识图谱嵌入模型(TransE、DistMult、ComplEx、RotatE和RGCN)进行训练,获得嵌入向量。再次,采用Adaboost决策树集成路径排序算法和多层感知机获取原始推理路径,结合类比推理进行预测。最后,通过传统性能、嵌入评估及复现率,选定TransE模型作为预测模型。该方法成功找到10种重定位候选药物,并通过相关文献证实它们的治疗效果,充分验证了该方法的有效性。该方法也可为其他从事药物重定位研究的学者提供一种结合路径信息的新思路。
Path-based Analogical Reasoning for Drug Repurposing
Traditional drug development is costly,inefficient and time-consuming,while drug repurposing methods provide a feasible al-ternative to reduce cost,improve efficiency and shorten time to market.Various knowledge graph-based drug repurposing methods have been proposed with relatively impressive results,but they have limitations such as limiting the scope of the dataset,dealing with simplistic relationships,and neglecting path information between nodes.To compensate for these shortcomings,we propose a drug repurposing approach based on analogical reasoning over the paths between drugs and diseases in knowledge graphs.Initially,multiple biological datasets are integrated to construct a heterogeneous information network.Subsequently,various knowledge graph embedding models(TransE,DistMult,ComplEx,RotatE,and RGCN)are trained to obtain embedding vectors.Then,path ranking algorithm and multilayer perceptron are stacked using AdaBoosted decision stumps to extract original reasoning paths,coupled with analogical reasoning for predictions.Finally,employing traditional performance metrics,embedding evaluations,and reproducibility rates,the TransE model is selected as the prediction model.The proposed approach successfully identifies 10 repurposing candidate drugs and confirms their therapeutic effects through relevant literature,which fully validates its effectiveness.The proposed approach offers a new perspective on drug repurposing by integrating path information,which may benefit other scholars involved in drug repurposing research.

drug repurposingknowledge graph embeddinganalogical reasoningpath ranking algorithmAdaboost

陈耿靖、王晖、郭躬德、林世水

展开 >

福建师范大学计算机与网络空间安全学院,福建福州 350117

贝尔法斯特女王大学电子电气工程和计算机科学学院,贝尔法斯特BT9 5BN

福建医科大学省立临床医学院,福建福州 350001

药物重定位 知识图谱嵌入 类比推理 路径排序算法 Adaboost

国家自然科学基金国家自然科学基金福建省自然科学基金

61976053621711312022J01398

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(8)