首页|基于改进ResNet的示功图分类算法研究

基于改进ResNet的示功图分类算法研究

扫码查看
示功图是反映抽油机井工作状态的重要图示,通过分析示功图的闭合曲线形状,可以得出抽油机井的具体工作状态,从而可以判断出抽油机井是否发生故障以及具体的故障类型.随着深度学习的发展,基于深度神经网络的示功图分类也逐渐应用到了抽油机井工况检测当中.该文提出了基于改进ResNet的示功图分类算法,通过优化残差结构和引入SE子结构等措施,提高了分类准确性和鲁棒性.改进的残差结构嵌入了 SE子结构,对输入特征进行降维的同时也减小了参数的数量,在降低计算量的同时也添加了更多非线性因素,通过不断增加有效特征的权重,不断减小无效特征的权重,进而完成了特征重标定,不仅起到加速网络收敛的作用,也使模型更加轻量化,从而提高了模型的性能.相较于其它模型,改进的ResNet模型可以更好地适应示功图分类任务,分类效果更好.实验结果表明,基于改进ResNet的示功图分类算法在精确率、召回率和F1值上均优于其它示功图分类算法.该研究为抽油机井工况检测系统提供了更好的理论支持.
Research on Indicator Diagram Classification Algorithm Based on Improved ResNet
The indicator diagram is an important diagram reflecting the working state of the pumping unit well.By analyzing the closed curve shape of the indicator diagram,the specific working state of the pumping unit well can be obtained,so that whether the fault occurs and the specific fault type can be judged.With the development of deep learning,the classification of indicator diagram based on deep neural network has been gradually applied to the condition detection of pumping wells.We propose a classification algorithm of indicator graph based on improved ResNet.By optimizing residual structure and introducing SE substructure,the classification accuracy and robustness are improved.The improved residual structure is embedded with the SE substructure,which reduces the number of parameters while reducing the dimension of input features,and adds more nonlinear factors while reducing the computational load.By continuously increasing the weight of effective features and continuously reducing the weight of invalid features,the feature re-calibration is completed,which not only accelerates network convergence,but also makes the model more lightweight.Thus the performance of the model is improved.Compared with other models,the improved ResNet model can better adapt to the task of indicator diagram classification,and the classification effect is better.The experimental results show that the improved ResNet indicator graph classification algorithm is superior to other indicator graph classification algorithms in terms of accuracy,recall and Fl value.This study provides a better theoretical support for the condition detection system of pumping unit.

pumping unit wellindicator diagramdeep learningResidual NetworkSqueeze-Excitation substructure

李建平、董永杨、宋明会

展开 >

东北石油大学环渤海能源研究院,河北秦皇岛 066004

东北石油大学计算机与信息技术学院,黑龙江大庆 163318

中国石油集团长城钻探工程有限公司录井公司,辽宁盘锦 124010

抽油机井 示功图 深度学习 ResNet SE子结构

海南省重点研发计划

ZDYF2023GXJS004

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(8)