计算机技术与发展2024,Vol.34Issue(9) :109-115.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0180

融入逻辑规则的知识图谱推荐模型研究

Research on Knowledge Graph Recommendation Models Integrated with Logical Rules

高文馨 李贯峰 王云丽 胡德洲 李瑞
计算机技术与发展2024,Vol.34Issue(9) :109-115.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0180

融入逻辑规则的知识图谱推荐模型研究

Research on Knowledge Graph Recommendation Models Integrated with Logical Rules

高文馨 1李贯峰 1王云丽 2胡德洲 2李瑞2
扫码查看

作者信息

  • 1. 宁夏大学 信息工程学院,宁夏 银川 750021;宁夏"东数西算"人工智能与信息安全重点实验室,宁夏 银川 750021
  • 2. 宁夏大学 信息工程学院,宁夏 银川 750021
  • 折叠

摘要

知识图谱嵌入技术已在推荐系统领域引起广泛关注,将结构化知识图谱中的信息融入到推荐模型中,可以提高推荐的个性化程度.然而,因为初始数据的不准确性会导致推荐结果不正确,现存的知识图谱推荐模型中仍存在误差传播问题.针对这个问题,该文提出了RR-KGE模型,由知识图谱嵌入模块和推荐算法模块组成;其中聚焦于知识图谱嵌入框架,将规则嵌入和知识图谱嵌入进行联合学习,通过规则给予模型更多的约束条件,以减少误差传播;并结合此框架将推荐算法ALS(Alternating Least Squares)和RNN(Recurrent Neural Network)相融合来获得更加精确的推荐结果;最后将RR-KGE与不同基准模型进行比较,在两个数据集上多项指标均优于对比模型,证明了推荐方法的有效性.

Abstract

Knowledge graph embedding technology has attracted widespread attention in the field of recommendation systems.Integrating information from structured knowledge graphs into recommendation models can enhance the personalization of recommendations.However,existing knowledge graph recommendation models still face the issue of error propagation due to the inaccuracy of initial data,which leads to incorrect recommendation results.To address this problem,we propose the RR-KGE model,consisting of a knowledge graph embedding module and a recommendation algorithm module.The focus is on the knowledge graph embedding framework,where rule embedding and knowledge graph embedding are jointly learned.Rules provide the model with additional constraints to reduce error propagation.This framework is combined with the recommendation algorithms ALS(Alternating Least Squares)and RNN(Recurrent Neural Network)to obtain more accurate recommendation results.Finally,RR-KGE is compared with different baseline models,and multiple metrics on two datasets demonstrate its superiority over the comparison models,confirming the effectiveness of the recommendation approach.

关键词

知识图谱/知识图谱嵌入/逻辑规则/推荐算法/联合学习

Key words

knowledge graph/knowledge graph embedding/logical rules/recommendation algorithm/joint learning

引用本文复制引用

基金项目

国家自然科学基金项目(62066038)

宁夏自然科学基金项目(2022AAC03026)

宁夏大学研究生创新项目(CXXM202356)

出版年

2024
计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
段落导航相关论文