首页|基于RTOPSIS的集成学习的综合评价研究

基于RTOPSIS的集成学习的综合评价研究

扫码查看
Stacking集成学习被认为是一种"黑盒"模型,采用多个基学习器的预测结果输入,通过元学习器来生成最终的预测.这种复杂性使得难以准确了解每个基学习器对最终结果的贡献.为解决此问题,该文提出了RTOPSIS方法.该方法结合了灰色关联度系数计算和优劣解距离方法,为决策者提供了一种有效的工具,以清晰地揭示每个基学习器在Stacking模型中对最终结果的贡献程度.具体而言:采用RTOPSIS算法替代传统的判别方法,综合考虑基学习器和元学习器之间的关系,提供更客观和合理的模型排名结果;应用灰色关联分析算法计算各个基学习器在Stacking模型中的权重,并反映其对最终结果的贡献程度.实验证明,相对于单一指标如Accuracy、AUC 和 F1-score 等,在 Stacking 模型综合评价中,RTOPSIS算法为该文6 个模型提供了更为合适的排名,且与经典优劣解距离算法的排序结果基本一致.因此,RTOPSIS算法在Stacking模型评价中展现出更全面的评价效果.
Research on Comprehensive Evaluation of Ensemble Learning Based on RTOPSIS
Stacking ensemble learning is often considered a"black-box"model,utilizing predictions from multiple base learners as input and employing a meta-learner to generate the final prediction.This complexity makes it difficult to understand exactly how each base learner contributes to the final result.To address this issue,we propose the RTOPSIS method.This method combines grey relational co-efficient calculations with the TOPSIS method,providing decision-makers with an effective tool to clearly reveal the contribution of each base learner in the Stacking model to the final outcome.Specifically,the RTOPSIS algorithm is employed as a substitute for traditional discriminative methods,comprehensively considering the relationships between base learners and meta-learners to yield more objective and rational model ranking results;The grey relational analysis algorithm is applied to calculate the weights of individual base learners in the Stacking model and reflect their contributions to the final outcome.Experimental results demonstrate that in the comprehensive evaluation of Stacking models,relative to singular metrics such as Accuracy,AUC,and F1-score,the RTOPSIS algorithm provides more appropriate rankings for the six models considered in this study,and is largely consistent with the ranking results of the classical distance-based TOPSIS algorithm.Therefore,the proposed RTOPSIS algorithm exhibits a more comprehensive evaluation effect in Stacking model assessment.

technique for order preference by similarity to an ideal solutiongrey correlation degreeweightStacking modelcomprehensive evaluation criteria

左胜勇、冯立超、陈学斌、张春艳

展开 >

华北理工大学 理学院 河北省数据科学与应用重点实验室,河北 唐山 063210

优劣解距离 灰色关联度 权重 Stacking模型 综合评价

国家自然科学基金区域创新发展联合基金项目

U20A20179

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(9)