首页|基于SLPA改进的重叠社团检测算法

基于SLPA改进的重叠社团检测算法

扫码查看
标签传播算法(Speaker-Listener Label Propagation Algorithm,SLPA)在重叠社团检测任务上具有线性时间复杂度和优良的检测效果,但作为一种随机算法其多次的随机选择策略致使算法的精度受限且算法结果不稳定;此外,算法在选取的阈值较低时容易出现大量相互嵌套的小型社团和重叠节点。针对上述问题,提出一种精度更高、稳定性更好的改进算法。算法初始化阶段,使用节点局部结构熵(Local Structure Entropy,LE)计算的节点重要性排序升序作为节点更新序列;标签传播阶段,使用资源分配指标(Resource Allocation,RA)作为节点进一步选择的依据,引导标签传播的方向;后处理阶段,新增两两对比待选社团集以去除嵌套包含的社团。在真实网络与人工网络上验证算法的有效性,使用重叠标准互信息(Overlapping Normalized Mutual Information,NMIov)和扩展模块度(Extended Modularity,EQ)与 5 个经典算法进行对比。实验证明,改进算法在精度与经典算法相比具有优势,在真实网络和人工网络中均具备较好的鲁棒性;改进算法与原算法相比,算法的结果精度分布更为集中,算法的稳定性有提升。
Improved Overlapping Community Detection Algorithm Based on SLPA
SLPA(Speaker-Listener Label Propagation Algorithm)has linear time complexity and excellent detection effect on overlapping community detection tasks,but as a random algorithm,its repeated random selection strategy limits the accuracy of the algorithm and the results of the algorithm are unstable.In addition,when the selected threshold is low,a large number of small communities and overlapping nodes are easy to appear.Aiming at the above problems,an improved algorithm with higher accuracy and better stability is proposed.In the initialization stage of the algorithm,the ascending order of node importance calculated by node local structure entropy(LE)is used as the node update sequence.In the stage of label propagation,the resource allocation(RA)is used as the basis for further selection of nodes to guide the direction of label propagation.In the post-processing stage,pairwise comparison to the selected community set is added to remove the nested communities.The proposed algorithm is verified on real networks and artificial networks,and compared with five classical algorithms by using overlapping normalized mutual information(NMIov)and Extended Modularity(EQ).Experiments show that the improved algorithm has advantages in accuracy compared with the classical algorithm,and has good robustness in both real networks and artificial networks.Compared with the original algorithm,the results of the improved algorithm are more concentrated and the stability of the algorithm is improved.

complex networkoverlapping community detectionlabel propagation algorithmlocal structure entropySLPA

胡志涛、余路粉、潘文林

展开 >

云南民族大学 数学与计算机科学学院,云南 昆明 650504

复杂网络 重叠社团检测 标签传播算法 局部结构熵 SLPA

国家自然科学基金

62362071

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(9)