首页|基于改进DenseNet的西夏文识别研究

基于改进DenseNet的西夏文识别研究

扫码查看
由于西夏文字的笔画繁多、结构复杂、相似性高以及西夏古籍存在缺字、狐斑、褪变等问题,目前对其检测识别依然是一项较为困难的研究,现有的识别研究多存在识别精度不够理想、漏检和错检等问题。因此,在综合分析当前主流研究的基础上,该文提出了一种基于改进DenseNet(Densely Connected Convolutional Networks)网络模型的西夏文识别方法。该方法通过引入空间通道重构卷积替换原模型中的传统3×3 卷积,其主要利用通道重建模块和空间重构模块减少了网络训练过程中特征图之间的冗余,提高了网络的特征表示能力;并在损失函数部分采用互通道损失函数代替了交叉熵损失,其在不引入任何外部参数的情况下,进一步减少特征冗余并且提高了网络聚焦于重点识别区域的能力。通过对比实验的结果表明,在668 类西夏文识别数据集上,该方法的准确率为97。08%,参数量为6。2 MB,相对比于目前主流的方法都有较明显的提升,证明了该方法的有效性。
Study on Recognition of Xixia Text Based on Improved DenseNet
Due to a large number of strokes,complex structure,high similarity,and the problems of missing characters,foxing,and fading in the ancient books of Xixia,it is still a difficult research to detect and recognize them at present,and the existing recognition studies mostly have problems such as suboptimal recognition accuracy,omission,misdiagnosis.Therefore,we propose an improved DenseNet-based Xixia text recognition method based on a comprehensive analysis of the current mainstream research.The proposed method replaces the traditional 3×3 convolution in the original model by introducing the spatial and channel reconstruction convolution,which mainly utilizes the channel reconstruction module and the spatial reconstruction module to reduce the redundancy between the feature maps in the training process of the network,and improves the feature representation capability of the network.Furthermore,it uses the mutual-channel loss instead of the cross-entropy loss in the loss function part,which further reduces the feature redundancy and improves the ability of the network to focus on the key recognition regions without introducing any external parameters.The results of the comparison experiments show that the accuracy of the proposed method is 97.08%and the parameters are 6.2 MB on 668 types of Xixia text recognition datasets,which is a more obvious improvement relative to the current mainstream methods,proving its effectiveness.

ancient books of Xixiatext recognitionchannel reconstructionspatial reconstructionmutual-channel loss

岳霄、景诗云、史伟

展开 >

宁夏大学 信息工程学院,宁夏 银川 750021

西夏古籍 文字识别 通道重建 空间重构 互通道损失

国家自然科学基金项目国家自然科学基金项目

6216603012061055

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(10)