首页|基于目标对齐和语义过滤的多模态情感分析

基于目标对齐和语义过滤的多模态情感分析

扫码查看
近年来许多研究工作利用注意力机制捕捉意见目标相应的视觉表征进行情感预测,但这种方法在细粒度意见目标对齐方面效果并不理想。为此,提出一种基于目标对齐和语义过滤的多模态情感分析方法。首先,引入目标识别方法Deepface获取图像的粗粒度意见目标,并使用映射方法,将粗粒度意见目标映射到细粒度意见目标,实现模态内的目标对齐。其次,利用Deepface获取粗粒度意见目标的情绪词并将其和视觉表征融合,使模型更准确地理解和表示意见目标的情感倾向。最后,引入图文匹配模型CLIP来评估图像与意见目标之间的语义关联性,从而过滤多余的视觉模态数据噪声。实验表明,提出的意见目标对齐和语义过滤能更好地利用视觉模态信息,提高情感预测的准确性。
Multimodal Sentiment Analysis Based on Target Alignment and Semantic Filtering
In recent years,many studies have utilized attention mechanisms to capture visual representations corresponding to opinion targets for sentiment prediction,but such methods are not ideal for fine-grained opinion target alignment.To address this,a multimodal sentiment analysis method based on target alignment and semantic filtering is proposed.First,the target recognition method Deepface is introduced to obtain coarse-grained opinion targets from images,and a mapping method is used to map these coarse-grained opinion targets to fine-grained opinion targets,achieving intra-modal target alignment.Second,emotion words associated with coarse-grained opinion targets obtained by Deepface are fused with visual representations,enabling the model to more accurately understand and represent the emotional tendencies of opinion targets.Finally,the text-image matching model CLIP is introduced to evaluate the semantic correlation between images and opinion targets,thereby filtering out redundant visual modal data noise.Experiments demonstrate that the proposed opinion target alignment and semantic filtering can better utilize visual modal information and improve the accuracy of sentiment prediction.

aspect-based sentiment analysistarget alignmentsemantic filteringnoisemultimodal

欧阳梦妮、樊小超、帕力旦·吐尔逊

展开 >

新疆师范大学 计算机科学技术学院,新疆 乌鲁木齐 830054

方面级情感分析 目标对齐 语义过滤 噪声 多模态

新疆维吾尔自治区自然科学基金项目国家自然科学基金项目国家自然科学基金项目新疆师范大学2022年度青年拔尖人才项目

2022D01A996206604462167008XJNUQB2022-23

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(10)