首页|基于自校正卷积与注意力的脑白质病变分割

基于自校正卷积与注意力的脑白质病变分割

扫码查看
脑白质病变是导致老年人认知功能障碍的主要原因之一,被认为是脑血管疾病的征兆。原始U-Net模型在图像分割任务中面临的主要问题包括细小病变区域的漏检、边界分割不准确等。提出一种基于自校正卷积与注意力机制的2D U-Net模型用于脑白质病变分割。首先,引入自校正卷积模块,整合其周边区域的信息以及通道间的相互作用,提高对细微病变检测的准确性。其次,使用两种不同的注意力模块,在编码的浅层和深层分别引入通道注意力机制和空间注意力机制,浅层编码器捕捉脑白质病变纹理的细粒度特征,而深层编码器提取病变的高级全局语义特征。最后,采用了一种跨层融合策略,将解码器模块中的特征图通过Transpose操作与编码器同层的特征图进行尺度特征的整合。实验结果表明,在2017 WMH分割挑战赛数据集和武汉同济医院数据集上分别测试了模型,其中Dice系数和Recall都分别达到了0。80、0。82和0。82、0。86。该方法可以有效地检测出脑白质病变,并且在1。5T磁共振成像协议识别效果显著。
Segmentation of Brain White Matter Lesions Using Fusion of Self-calibrated Convolution and Attention
White matter lesions are one of the main causes of cognitive dysfunction in the elderly and are considered to be signs of cere-brovascular disease.The main problems faced by the original U-Net model in image segmentation tasks include missed detection of small lesion areas and inaccurate boundary segmentation.A 2D U-Net model based on self-calibrated convolution and attention mechanism is proposed for white matter lesion segmentation.Firstly,a self-calibrated convolution module is introduced to integrate the information of its surrounding areas and the interaction between channels to improve the accuracy of subtle lesion detection.Secondly,two different attention modules are used to introduce channel attention mechanism and spatial attention mechanism in the shallow and deep layers of en-coding respectively.The shallow encoder captures the fine-grained features of the white matter lesion texture,while deep encoders extract high-level global semantic features of lesions.Finally,a cross-layer fusion strategy is adopted to integrate the scale features of the feature map in the decoder module with the feature map of the same layer of the encoder through the Transpose operation.Experimental results show that the model was tested on the 2017 WMH Segmentation Challenge data set and Wuhan Tongji Hospital data set,in which the Dice coefficient and Recall reached 0.80,0.82,and 0.82,0.86 respectively.The proposed method can effectively detect brain white matter lesions,and the recognition effect is remarkable in the 1.5T magnetic resonance imaging protocol.

white matter lesionssegmentationwhite matter hyperintensitiesattention mechanismSCConv

岳江、刘庆晨、韩晓鑫、刘浩、王建林

展开 >

甘肃中医药大学医学信息工程学院,甘肃兰州 730000

兰州大学第一医院,甘肃兰州 730000

脑白质病变 分割 脑白质高信号 注意力机制 自校正卷积

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(12)