首页|基于多智能体强化学习的多联机空调节能控制

基于多智能体强化学习的多联机空调节能控制

扫码查看
多联机空调系统目前是空调发展的主要趋势,其节能控制研究逐渐成为空调领域的研究热点。然而传统的空调节能控制方法在非线性特征表示、高泛化性机理建模、设备参数精确自调节等方面存在较大挑战。对此,提出一种基于多智能体强化学习的多联机空调节能控制方法。首先,筛选多联机空调节能控制参数,实现参数的解耦与降维,利用深度神经网络构建了高泛化性的多联机空调运行模型,降低多智能体强化学习模型的训练时长;然后,提出多智能体协作的多联机空调智能化节能控制方法,设计了智能体的状态空间、动作空间和奖励函数;智能体采用集中式训练、分布式执行的方式,优化空调控制策略,同时设计了环境初始化条件,增加了环境多样性;最后,在包含3个地区、2个季节的空调运行历史数据集上开展广泛实验,结果表明该方法能够有效控制室内温度,能效比提高约18%。
Energy-saving Control of Multi-split Air Conditioning Based on Multi-agent Reinforcement Learning
The multi-split air conditioning system is the main trend in the development of air conditioning,and research on its energy-saving control has gradually become a hot topic in the field of air conditioning.However,traditional energy-saving control methods face significant challenges in nonlinear feature representation,high generalization mechanism modeling,and precise self-adjustment of equipment parameters.To address this,a multi-agent deep reinforcement learning-based energy-saving control method for multi-split air conditioning is proposed.Firstly,the energy-saving control parameters of the multi-split air conditioning are selected to achieve parameter decoupling and dimensionality reduction.A highly generalized operational model for multi-split air conditioning is constructed using deep neural networks to reduce the training time of the multi-agent reinforcement learning model.Then,a multi-agent collaborative intelligent energy-saving control method for multi-split air conditioning is proposed,designing the state space,action space,and reward function of the agents.The agents are trained in a centralized manner and executed in a distributed manner to optimize the air conditioning control strategy.Meanwhile,environmental initialization conditions are designed to increase environmental diversity.Finally,extensive experiments are conducted on an air conditioning operation historical data set from three regions and two seasons.The results show that the proposed method can effectively control indoor temperature,with an increase in energy efficiency ratio of about 18%.

multi-split air conditioningprecise self-adjustment of parametersmulti-agent reinforcement learningdeep neural networksenergy-saving control

朱明飞、孙铁军、阮岱玮、吴春雷

展开 >

中国石油大学(华东)计算机科学与技术学院,山东青岛 266580

青岛海信日立空调系统有限公司,山东 青岛 266001

多联机空调 参数精确自调节 多智能体强化学习 深度神经网络 节能控制

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(12)