首页|基于模糊特征簇的空间高效用并置模式挖掘算法

基于模糊特征簇的空间高效用并置模式挖掘算法

扫码查看
实例经常出现在相邻区域的空间特征集被称为空间并置模式。空间高效用并置模式是空间并置模式挖掘的一项扩展性研究,其考虑了模式的效用价值,更能反映出空间特征间的高质量聚集现象。现有的空间高效用并置模式挖掘方法大多使用自适应的效用参与度(Utility Participation Index,UPI)作为度量参数。然而,UPI没有考虑真实地理环境中"邻近"概念的模糊性和重叠性。此外,由于UPI不满足向下闭合性,算法的挖掘效率也不够理想。因此,该文结合模糊集理论构建了空间模糊邻近关系,提出了新的模糊效用度计算方法。同时,引入了模糊Chameleon聚类算法,提取了基于模糊特征效用度的模糊特征簇,从而进一步提取空间高效用并置模式。最后,在三个模拟数据集和两个真实数据集上进行了大量的实验,证明了该算法的合理性及有效性。
Spatial High Utility Co-location Pattern Mining Based on Fuzzy Feature Clusters
Sets of spatial features whose instances frequently appear together in nearby areas are regarded as spatial co-location patterns.Spatial high utility co-location patterns is an extended research of spatial co-location pattern mining,which better reflects the high-quality aggregation phenomenon among spatial features.Most of the existing methods use the adaptive utility participation index(UPI)as a metric parameter for mining high utility co-locations.However,UPI does not take into account the influence of fuzziness and overlap of proximity relationships on the utility of co-location patterns.Furthermore,UPI does not satisfy the downward closure property,the mining efficiency is still not satisfactory.Combining fuzzy set theory,we establish fuzzy neighbor relationships and propose a new method for calculating the utility of co-location patterns.At the same time,we generate the fuzzy high utility feature clusters by the Fuzzy Chameleon Clustering algorithm,and extract spatial high utility co-location patterns from these high utility clusters.Finally,a large number of experiments are conducted on three synthetic datasets and two real datasets,which prove the rationality and effectiveness of the proposed algorithms.

spatial data miningspatial co-location patternhigh utilityfuzzy clusteringfuzzy feature cluster

金佩洁、王晓璇、熊文、王丽珍、高嵩

展开 >

云南师范大学信息学院,云南 昆明 650500

云南省教育厅 计算机视觉与智能控制技术工程研究中心,云南 昆明 650500

云南大学 滇池学院,云南 昆明 650500

云南大学软件学院,云南 昆明 650500

展开 >

空间数据挖掘 空间并置模式 高效用 模糊聚类 模糊特征簇

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(12)