首页|基于改进Dense Teacher的半监督目标检测算法

基于改进Dense Teacher的半监督目标检测算法

扫码查看
在深度学习目标检测领域中,标注数据的复杂性对半监督目标检测技术的发展起到了推动作用。近期,无锚框目标检测器在半监督目标检测中的应用逐渐增多。然而,现有方法仍面临特征表达不足和伪标签质量参差不齐的挑战。为解决这一问题,该文提出了一种基于优化Dense Teacher的半监督目标检测算法。首先,通过设计通道信息增强的特征金字塔(CIE-FPN),优化了特征图的感受野和特征融合,旨在捕获更丰富的全局特征信息。其次,采用伪标签双分支处理策略,以解决分类与检测任务在伪标签需求上的不一致性,从而提高伪标签的可靠性。实验结果表明,在COCO数据集仅使用10%有标注数据的条件下,与基线网络Dense Teacher相比,提出的改进算法在提升无锚框半监督目标检测性能方面取得了明显效果。
Semi-supervised Object Detection Algorithm Based on Improved Dense Teacher
The complexity of annotation in deep learning-based object detection has spurred advancements in semi-supervised target detection techniques.Recently,anchor-free object detectors have been applied in semi-supervised object detection,however existing methods face problems of inadequate feature representation and low quality of pseudo labels.For this purpose,we propose an semi-supervised object detection algorithm based on improved Dense Teacher.Firstly,a feature pyramid(CIE-FPN)based on channel information enhancement is designed to optimize the receptive field and feature fusion of feature maps,so as to capture more global feature information.Secondly,a pseudo-label double-branch processing strategy is adopted to solve the inconsistency between classification and detection tasks,and then improve the robustness of pseudo-labels.Experimental results on the COCO dataset,with only 10%of data annotated,demonstrate significant improvements in anchor-free semi-supervised object detection performance compared to the baseline Dense Teacher network.

anchor-free object detectorfeature fusionpseudo-labelsdouble branch processing strategysemi-supervised learningsemi-supervised object detection

林紫心、陈东方、王晓峰

展开 >

武汉科技大学计算机科学与技术学院,湖北 武汉 430065

智能信息处理与实时工业系统湖北省重点实验室,湖北 武汉 430065

无锚框目标检测器 特征融合 伪标签 双分支处理策略 半监督学习 半监督目标检测

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(12)