首页|基于LOD-RSINet的轻量化遥感图像目标检测

基于LOD-RSINet的轻量化遥感图像目标检测

扫码查看
为了满足遥感图像目标检测任务中轻量化和快速推理的需求,提出了一种基于改进YOLOv8s的轻量化遥感图像目标检测算法(A Lightweight Object Detection Network for Remote Sensing Images,LOD-RSINet)。首先,提出基于 SENetv2 机制构建的C2SE(C2f-SENetv2)模块,在略微增加模型参数量的同时让网络更有效地学习到输入数据的不同特征,提升特征表达的精细度和全局信息的整合能力;其次,设计一种轻量级跨尺度特征融合模块CCFM,以增强模型对于尺度变化的适应性和对小目标的检测能力,在不影响模型检测精度的情况下降低了参数量并提高了检测速度;最后,引入了一种Shape IoU损失函数,通过关注边界框本身的形状和尺度来计算损失,从而使边界框回归更加准确。实验证明,改进后的算法在DIOR数据集上的检测精度mAP50和mAP50-95分别达到了 0。867和0。668,参数量GFLOPs降低了 5。61百分点,检测速度FPS提高了 5。94百分点,性能表现优于其他对比方法,能够在轻量化的同时提高模型的目标检测能力。
Lightweight Remote Sensing Images Object Detection Based on LOD-RSINet
In order to meet the needs of lightweight and fast inference in remote sensing image target detection tasks,a lightweight remote sensing image target detection algorithm(A Lightweight Object Detection Network for Remote Sensing Images,LOD-RSINet)based on improved YOLOv8s is proposed.Firstly,a C2SE(C2f-SENetv2)module based on the SENetv2 mechanism is proposed,which slightly increases the number of model parameters while allowing the network to learn different features of the input data more efficiently,and im-proves the finesse of feature expression and the integration of global information.Secondly,a lightweight cross-scale feature fusion module,CCFM,is designed to enhance the model's adaptability to scale changes and its ability to detect small targets,which reduces the number of parameters and improves the detection speed without affecting the model's detection accuracy.Finally,a Shape IoU loss function is introduced to calculate the loss by focusing on the shape and scale of the bounding box itself,which makes the bounding box regression more accurate.Experiments demonstrate that the improved algorithm achieves detection accuracy mAP50 and mAP50-95 of 0.867 and 0.668 on the DIOR dataset,respectively,with a reduction of 5.61 percentage points in the number of parametric GFLOPs,and an improvement of 5.94 percentage points in the detection speed FPS,which outperforms the other comparative methods,and is able to improve the model's target detection capability while being lightweight.

YOLOv8lightweightremote sensing images object detectioncross-scale feature fusionloss function

李琛、丁胜、付佳俊

展开 >

武汉科技大学计算机科学与技术学院,湖北武汉 430065

武汉科技大学智能信息处理与实时工业系统湖北省重点实验室,湖北武汉 430065

YOLOv8 轻量化 遥感图像目标检测 跨尺度特征融合 损失函数

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(12)