首页|基于多策略改进灰狼算法的测井仪器遇卡预测

基于多策略改进灰狼算法的测井仪器遇卡预测

扫码查看
针对测井作业中遇卡现象预测难度大、预测准确率低的问题,以及灰狼优化算法(Grey Wolf Optimizer,GWO)存在种群多样性不足、易陷入局部最优的缺陷,该文提出了一种基于多策略改进的灰狼优化算法(Improved Grey Wolf Optimizer,IGWO)结合支持向量机(Support Vector Machine,SVM)进行仪器遇卡分析。利用佳点集理论初始化提高种群多样性,引入自适应调整机制与差分进化算法(Differential Evolution,DE)的交叉变异的处理机制以及混沌干扰避免局部最优问题。同时,在种群迭代过程中加入贪婪策略指导个体的选择更新,从而加速收敛。将IGWO算法与其他5种群体智能优化算法在4种测试函数上进行实验,并将其应用到测井遇卡预测问题中,实验结果表明,通过IGWO算法对模型参数进行调优,有效提升了算法的寻优能力和全局搜索能力。优化后的模型在测试集上的平均交叉验证准确率为86。26%,其中,几何遇卡的MAE为0。1,RMSE为0。316 2;力学遇卡的MAE为0。05,RMSE为0。223 6。整体上,模型表现出较高的准确率和较小的误差,具有较强的预测能力,为解决测井作业中的遇卡问题提供了有效的解决方案。
Logging Instrument Jam Prediction Based on Multi-strategy Improved Grey Wolf Algorithm
Aiming at the problem of difficulty in predicting the stuck phenomenon and low prediction accuracy in well logging operations,as well as the defects of Grey Wolf Optimizer(GWO)in insufficient population diversity and easy to fall into local optimality,we propose an Improved Grey Wolf Optimizer(IGWO)based on multiple strategies combined with Support Vector Machine(SVM)for in-strument stuck analysis.The population diversity was improved by initialization using the good point set theory,and the crossover mutation processing mechanism of the Differential Evolution(DE)algorithm and chaotic interference were introduced to avoid the local optimal problem.At the same time,the greedy strategy was added to guide the selection and update of individuals in the population iteration process,thereby accelerating convergence.The IGWO and five other swarm intelligence optimization algorithms were experimented on four test functions and applied to the problem of well logging stuck prediction.The experimental results show that the optimization of the model parameters by the IGWO effectively improves the algorithm's optimization ability and global search ability.The average cross-validation accuracy of the optimized model on the test set is 86.26%,among which the MAE of geometric stucking is 0.1 and the RMSE is 0.316 2,the MAE of mechanical stucking is 0.05 and the RMSE is 0.223 6.Overall,the model shows high accuracy and small error,with strong prediction ability,and provides an effective solution to the stuck problem in well logging operations.

stuck analysissupport vector machinegrey wolf optimizermultiple strategiesgood point setdifferential evolutionchaotic interference

高雅田、李英楠

展开 >

东北石油大学计算机与信息技术学院,黑龙江 大庆 163318

遇卡分析 支持向量机 灰狼优化算法 多策略 佳点集 差分进化算法 混沌干扰

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(12)