首页|基于潜在辅助特征的图像超分辨率重建算法研究

基于潜在辅助特征的图像超分辨率重建算法研究

扫码查看
图像超分辨率重建作为图像质量增强研究领域的基本任务之一,具有很高的研究和应用价值.生成对抗网络可以有效提高超分辨率重建图像的纹理细节信息,在该领域得到了广泛应用.然而,仅仅依靠从输入的低分辨率图像中学习的特征信息,难以重建出高质量的超分辨率图像.针对该问题,本文提出一种基于潜在辅助特征的图像超分辨率重建算法,引入一个可训练的潜在特征来扩大生成器的特征空间,为重建图像提供辅助的特征信息,提高重建效果.同时还利用输入图像特征来对潜在辅助特征的生成进行约束指导,避免特征空间差异性大,导致重建图像保真度低.本文所提方法在7个公开数据集上与7种方法进行了对比实验.实验结果表明,本文方法所重建的超分图像纹理细节信息更丰富,视觉效果更好.
Research on Image Super-Resolution Reconstruction Algorithm Based on Latent Auxiliary Feature
As one of the basic research tasks in image quality enhancement field,image super-resolution has high research and appli-cation value.Generative adversarial network can effectively improve the texture detail information of super-resolution images,which has been widely used in this field.However,it is difficult to generate high-quality images relying on the features just learned from the input low-resolution images.To solve this problem,this paper proposes an image super-resolution reconstruction algorithm based on latent auxiliary feature,which introduces a trainable latent feature to expand the feature space of the generator,and provides auxiliary feature information to improve visual performance.Moreover,we also utilize the image feature to constrain the latent feature space,which can avoid low fidelity of the super-resolution image content.The proposed method was compared with seven methods on seven public datasets.Experimental results show that our proposed method has richer detail information and better visual effect.

image super-resolution reconstructionimage quality enhancementgenerative adversarial networklatent auxiliary fea-turedeep learning

刘晨鸣、张能欢、刚睿鹏、马赛、王永滨

展开 >

国家广播电视总局 广播电视科学研究院 北京 100866

中国传媒大学 媒体融合与传播国家重点实验室 北京 100024

图像超分辨率重建 图像质量增强 生成对抗网络 潜在辅助特征 深度学习

国家广播电视总局广播电视科学研究院基本科研业务费项目

JBKY20230100

2024

网络新媒体技术
中国科学院声学研究所

网络新媒体技术

CSTPCD
影响因子:0.208
ISSN:2095-347X
年,卷(期):2024.13(2)
  • 18