首页|基于大模型的红外图像电力设备交互式分割

基于大模型的红外图像电力设备交互式分割

扫码查看
电力系统的智能化检测已经成为现代工业生产的重要保障,而其中对日常巡检中采集的红外图像进行电力设备区域分割是电力故障诊断过程中的重要环节.然而,当前基于深度学习的电力设备红外图像分割方法需要大量人工标注的样本,像素级的人工标注费时费力.为此,利用可见光图像数据集中预训练得到的大模型所具有的泛化性优势,将图像分割大模型一分割任意模型(SAM)应用于红外图像的电力设备交互式分割,利用少量的用户点击输入,快速得到准确的电力设备分割结果.在本文构建的电力场景红外图像数据集中,利用模拟的用户点击对模型性能进行了评估.实验表明,本文的方法在无需额外训练的情况下能够精准地实现电力设备的交互式分割.本文的方法能够有效地帮助工作人员提高对电力设备图像的标注效率,快速构建大规模红外图像数据集,促进红外图像分割模型及故障诊断模型的训练,助力电力系统检测智能化水平的提升.
Large Model Based Interactive Segmentation of Infrared Image for Power Equipment
Intelligent monitoring of power systems has become an important guarantee for modern industrial production,and the segmen-tation of power equipment in infrared images collected during daily inspections is an important part of the power fault diagnosis process.However,current deep learning-based infrared image segmentation methods require a large number of manually annotated samples,which is time-consuming and labor-intensive.Therefore,this paper takes advantage of large models pre-trained from visible light image datasets and applies the image segmentation model,Segment Anything Model(SAM),to interactive segmentation of power e-quipment in infrared images.With a small amount of user input,accurate power equipment segmentation results can be quickly ob-tained.In the self-constructed infrared image dataset,the model's performance was evaluated using simulated user clicks.The ex-periments show that the proposed method can accurately achieve interactive segmentation of power equipment without the need for addi-tional training.This method can effectively help workers improve the efficiency of annotating power equipment,quickly build large-scale infrared image datasets,promote the training of infrared image segmentation and fault diagnosis models,and help improve the lev-el of intelligent monitoring of power systems.

Power equipmentInfrared imageInteractive segmentationLarge ModelImage annotation

林颖、张峰达、李壮壮、郑文杰、戈宁

展开 >

国网山东省电力公司电力科学研究院 济南 250002

国网山东省电力公司 济南 250001

电力设备 红外图像 交互式分割 大模型 图像标注

国家电网山东省电力公司科技项目

520626220008

2024

网络新媒体技术
中国科学院声学研究所

网络新媒体技术

CSTPCD
影响因子:0.208
ISSN:2095-347X
年,卷(期):2024.13(2)
  • 27