首页|多源域子域自适应网络脑电信号情感识别

多源域子域自适应网络脑电信号情感识别

扫码查看
由于脑电信号的非平稳和个体差异性,构建通用的脑电信号情感识别模型是情感脑机接口领域的一个难点.针对这一问题,提出多源域子域自适应网络实现脑电信号情感识别.首先,将每名被试看作不同的源域,设计特定域特征提取器,充分利用多个源域的数据样本,提高模型泛化能力.其次,针对多源域迁移过程中各源域脑电信号分布差异问题,提出多源域差异损失以减小方差,提高模型稳定性.最后,训练域不变分类器过程中,将源域和目标域按照情感类别划分为不同子域,利用局部最大均值差异实现子域自适应,提高情感识别精度.在SEED和SEED-Ⅳ2个情感脑电数据集上进行实验,结果表明,该方法有效提高了跨被试、跨时间的脑电信号情感识别精度,且模型稳定、泛化能力强.
Multi-Source Subdomain Adaptation Network Electroencephalogram Emotion Recognition
Because of the non-stationary and individual differences of EEG,it is difficult to construct a common EEG emotion recogni-tion model.To solve this problem,Multi-Source Subdomain Adaptation Network is proposed to realize EEG emotion recognition.First-ly,each subject is regarded as an different source domain,and a domain-specific feature extractor is designed to make full use of data samples from multiple source domains to improve the generalization ability of the model.Secondly,in view of the distribution discrep-ancy of EEG signals from each source domain in the process of multi-source domain transfer,the multi-source domain discrepancy loss is proposed to reduce the variance and improve the stability of the model.Finally,training a domain-invariant classifier,the source do-main and target domain are divided into different subdomains.The local maximum mean discrepancy loss is used to realize subdomain adaptation and improve the accuracy of emotion recognition.Experiments are carried out on two emotional EEG datasets SEED and SEED-Ⅳ.The results indicate that the method effectively increases the accuracy of cross-subject and cross-session EEG emotion recog-nition,and the model is more stable and has strong generalization ability.

electroencephalogramemotion recognitiontransfer learningsubdomain adaptationdistribution difference

杨江江、乔晓艳

展开 >

山西大学 物理电子工程学院 太原 030006

脑电信号 情感识别 迁移学习 子域自适应 分布差异

山西省回国留学人员科研资助项目

2020-009

2024

网络新媒体技术
中国科学院声学研究所

网络新媒体技术

CSTPCD
影响因子:0.208
ISSN:2095-347X
年,卷(期):2024.13(5)