首页|基于节点中心性和热度的数据布局方法

基于节点中心性和热度的数据布局方法

扫码查看
随着5G和大数据的飞速发展,海量数据的快速、持久存储需求对存储设备和网络性能提出了极大挑战.信息中心网络以及边缘存储等技术的出现,使数据能够在网络边缘就近存储,减少了数据传输时延.但数据长期存储在网络边缘势必会引发边缘节点空间不足的问题,迫使数据传向更远方,降低存储效率.针对上述问题,提出一种基于节点中心性和热度的数据布局方法,利用节点空闲时间将高空间负载节点的数据迁移至低空间负载的节点,确保边缘高热度的节点空间富余.实验结果表明,相比较Random和一致性Hash等存储布局方案,在进行长期存储任务后,该方法能在边缘空间相对不足的情况下,减少存储数据时的传输开销,使数据写入时间减少30%以上.
Data Layout Method Based on Node Centrality and Hotness
With the rapid development of 5G and big data,the demand for fast and persistent storage of massive data poses a great chal-lenge to storage equipment and network performance.The emergence of information-center networks and technologies such as edge stor-age enables data to be stored near the edge of the network,which reduces the data transmission delay.However,long-term data storage at the edge of the network will inevitably lead to the problem of insufficient node space at the edge,forcing the data to be transmitted to a more distant place and reducing the storage efficiency.To address the above problems,a data layout method based on node centrality and hotness is proposed in the paper,which utilizes the idle time of nodes to migrate data from high space load nodes to low space load nodes,ensuring space surplus for nodes with high heat at the edges.The experimental results show that compared with the storage lay-out schemes such as random and consistent Hash,after a long-term storage task,the method reduces the transmission overhead when storing data in the presence of a relative lack of edge space,reducing the data writing time by more than 30%.

information-centric networkingdata storagedata layoutload balancingcentrality metric

汪雨、韩锐、党寿江

展开 >

中国科学院声学研究所 国家网络新媒体工程技术研究中心 北京 100190

中国科学院大学 北京 100049

信息中心网络 数据存储 数据布局 负载均衡 中心性度量

国家重点研发计划课题

2023YFB2906404

2024

网络新媒体技术
中国科学院声学研究所

网络新媒体技术

CSTPCD
影响因子:0.208
ISSN:2095-347X
年,卷(期):2024.13(5)