首页|基于DDQN的三元多级散列异步流量调度方法

基于DDQN的三元多级散列异步流量调度方法

扫码查看
数据中心网络(DCNs)中Web访问和分布式计算的短消息业务占据大部分的流量,为解决数据中心短消息的长尾效应,提出一种接收端驱动的基于强化学习面向动态优先级的流量调度算法.该算法基于双重深度Q网络(DDQN)强化学习设置动态调度门限,完成动态优先级分配,并在发送队列按照差额轮询极大地降低了低优先级长消息的尾部延时,在发送端将长度小于调度门限的短数据包直接发送,在接收端根据三元检测的信息给长度大于调度门限的数据包动态分配优先级队列,消除抢占延时,保证链路的高占用率和低传输时延.实验表明,本算法在链路95%以上的高负载情况下,对字节数小于Un-scheduled Bytes的短消息流完成时间放缓比降低了 85%.
A Ternary Detection Multi-level Hashed Asynchronous Traffic Scheduling Method Based on DDQN
In Data Center Networks(DCNs),short message services related to Web access and distributed computing dominate the traf-fic.To address the long tail effect of short messages in data centers,we propose a receiver-driven traffic scheduling algorithm based on reinforcement learning and dynamic priorities.Leveraging DDQN(Double Deep Q-Network)reinforcement learning,the algorithm es-tablishes a dynamic scheduling threshold,performs dynamic priority allocation,and effectively reduces the tail delay of low-priority long messages through differential polling in the sending queue.Additionally,it directly sends short packets with lengths below the scheduling threshold from the sending end.At the receiving end,priority queues are dynamically assigned to packets longer than the scheduling threshold based on triplet detection information,eliminating preemption delay and ensuring high link occupancy and low transmission delay.Experimental results demonstrate that the proposed algorithm can reduce the completion time slowdown ratio of short message streams with less than Unscheduled Bytes by 85%under high loads exceeding 95%of the link capacity.

traffic schedulingdata center networkDDQN reinforcement learningin-network priorityternary detection

张皓瀚、易晶晶

展开 >

武汉邮电科学研究院 湖北 武汉 430074

中国信息通信科技集团烽火通信有限公司 湖北 武汉 430073

流量调度 数据中心网络 DDQN强化学习 带内优先级 三元检测

科技部重大研发专项

2022YFB2901200

2024

网络新媒体技术
中国科学院声学研究所

网络新媒体技术

CSTPCD
影响因子:0.208
ISSN:2095-347X
年,卷(期):2024.13(5)