首页|基于混合注意力的单幅图像去雾算法

基于混合注意力的单幅图像去雾算法

扫码查看
单幅图像去雾是指将模糊图像经过处理恢复成清晰图像的过程.随着计算机图像处理的快速发展,基于深度学习的去雾算法有了较大进展,但仍存在一些问题,如颜色失真、去雾不完全等.为了解决这些问题,设计了一种混合注意力机制,该机制结合了 Transformer注意力、通道注意力和像素注意力,并引入可变形卷积用于特征提取,从而构建一个单幅图像去雾网络.为了得到更好的去雾模型,在RESIDE数据集上对该模型进行训练和调试,取得了较好的实验结果:PSNR指标比FFA-Net 提升 3.5%,比 GCANet 提升 4.2%;SSIM 指标比 FFA-Net 提升 0.21%,比 GCANet 提升 1.1%.
Single Image Dehazing Algorithm Based on Mixed Attention
Single image dehazing refers to the process of restoring a hazy image to a clear one through image processing.Recently,as the rapid development of computer image processing,deep learning-based fog removal algorithms have made great progress,but there are still some problems,such as color distortion,incomplete fog removal and so on.To solve these problems,a hybrid attention mecha-nism was designed,combining Transformer attention,channel attention,and pixel attention,and introducing deformable convolution for feature extraction,thereby constructing a single image dehazing network.In order to obtain a better defogging model,the model is trained and debuggable in the data set RESIDE,and good experimental results are obtained:the PSNR metric is improved by 3.5%compared to FFA-Net and by 4.2%compared to GCANet,and SSIM metric is improved by 0.21%compared to FFA-Net and by 1.1%compared to GCANet.

Computer image processingDeep learningTransformer attention mechanismDeformable convolutionRESIDE data set

王贺、陈巧莹

展开 >

山西大学 物理电子工程学院 太原 030006

计算机图像处理 深度学习 Transformer注意力机制 可变形卷积 RESIDE数据集

2024

网络新媒体技术
中国科学院声学研究所

网络新媒体技术

CSTPCD
影响因子:0.208
ISSN:2095-347X
年,卷(期):2024.13(6)