首页|基于多尺度特征融合的无参考图像质量评估

基于多尺度特征融合的无参考图像质量评估

扫码查看
图像质量评估是图像处理领域基础技术之一.无参考图像质量评估模型(NR-IQA)无需参考图像,具有更广泛的适用性,一直是图像质量评估领域研究的热点.本文提出一种基于密集特征金字塔网络和Swin Transformer的无参考图像质量评估算法.密集特征金字塔网络采用层间残差连接、层间密集连接和特征重加权策略,其自顶向下和自底向上的聚合路径能更有效地聚合多尺度特征.Swin Transformer引入窗口注意力机制,更好地捕获图像中的局部和全局信息,减少了计算复杂度.在TID2013数据集上,本文算法的SROCC和PLCC指标相比原算法分别提升2.6%和1.9%,在KADID-10k数据集上分别提升1.4%和0.9%,提高了无参考图像质量评估的性能.
No-reference Image Quality Assessment Based on Multi-scale Feature Fusion
Image quality assessment is one of the basic technologies in the image field of image processing.The reference-free image quality assessment model does not require the use of reference images and has wider applicability.It has always been a hot research topic in the field of image quality assessment.This paper proposes a no-reference image quality assessment algorithm based on dense feature pyramid network and Swin Transformer.The dense feature pyramid network uses inter-layer residual connections,inter-layer dense connections and feature re-weighting strategies,and its top-down and bottom-up aggregation paths can aggregate multi-scale fea-tures more effectively.Swin Transformer introduces a window attention mechanism to better capture local and global information in ima-ges and reduce computational complexity.On the TID2013 data set,the SROCC and PLCC indicators of this algorithm are improved by 2.6%and 1.9%respectively compared with the original algorithm.On the KADID-10k data set,the SROCC and PLCC indicators are improved by 1.4%and 0.9%respectively,which improves the performance of the no-reference image quality assessment.

deep learningimage quality assessmentfeature pyramidmulti-scale feature fusionSwin Transformer

奥宁宁、王贺

展开 >

山西大学 物理电子工程学院 山西 太原 030006

深度学习 图像质量评估 特征金字塔 多尺度特征融合 Swin Transformer

2024

网络新媒体技术
中国科学院声学研究所

网络新媒体技术

CSTPCD
影响因子:0.208
ISSN:2095-347X
年,卷(期):2024.13(6)