首页|基于反向传播神经网络的卤水蒸发速率预测模型

基于反向传播神经网络的卤水蒸发速率预测模型

扫码查看
卤水的蒸发速率是盐田生产管理中的一个重要技术参数,通过搭建室外卤水蒸发实验装置,分析了辐照强度、风速、环境温度、相对湿度、卤水温度、卤水浓度与卤水蒸发速率的关系.利用反向传播(BP)神经网络,训练构建了卤水蒸发速率预测模型,并与传统的应用回归方法构建的模型进行比较.结果表明,BP神经网络模型和非线性回归模型的决定系数R2分别为0.902和0.884,预测平均相对误差分别为15.723%和18.943%,BP神经网络模型的拟合效果和预测能力均优于非线性回归模型.说明应用BP神经网络构建卤水蒸发速率预测模型是可行的,能够实现蒸发速率的快速估测.
Prediction model of brine evaporation rate based on back-propagation neural network
Brine evaporation rate is an important technical parameter in the production and management of salt pans.By set-ting up an outdoor brine evaporation experimental device,the relationship between irradiation intensity,wind speed,ambi-ent temperature,relative humidity,brine temperature,brine concentration,and brine evaporation rate was analyzed.The pre-diction model of brine evaporation rate was constructed by using back-propagation(BP)neural network and compared with the model constructed by traditional regression method.The results showed that the determination coefficients R2 of BP neu-ral network model and nonlinear regression model were 0.902 and 0.884,respectively,and the average relative error were 15.723%and 18.943%,respectively.It was indicated that the fitting effect and prediction ability of BP neural network model were better than nonlinear regression model.It was feasible to use BP neural network to construct the prediction model of brine evaporation rate,which could realize the rapid estimation of evaporation rate.

brine evaporation ratequantitative analysisnonlinear regressionback-propagation neural network

李志伟、付振海、张志宏、李生廷

展开 >

中国科学院青海盐湖研究所,青海西宁 810008

中国科学院盐湖资源综合高效利用重点实验室,青海西宁 810008

青海省盐湖资源化学重点实验室,青海西宁 810008

青海盐湖工业股份有限公司,青海格尔木 816000

展开 >

卤水蒸发速率 定量分析 非线性回归 反向传播神经网络

青海省科技厅项目中国科学院STS区域重点项目

2021-GX-102KFJ-STS-QYZD2021-06-001

2024

无机盐工业
中海油天津化工研究设计院 中国化工学会无机酸碱盐专业委员会

无机盐工业

CSTPCD北大核心
影响因子:0.489
ISSN:1006-4990
年,卷(期):2024.56(1)
  • 11