首页|基于机器学习的材料设计

基于机器学习的材料设计

扫码查看
近年来,计算机算力的飞速提升推动了科学计算和人工智能领域的突破性进展.这两个领域深度融合,共同催生了数据驱动的变革性科学研究范式.作为人工智能技术的代表,机器学习为材料的计算设计带来了前所未有的发展机遇,当前的应用方向主要包括性质预测、合成预测、知识发现、生成式逆向设计等.文章将简要介绍该领域的研究进展,并展望未来发展方向与挑战.
Materials design based on machine learning
In recent years the rapid growth of computer processing power has led to major breakthroughs in scientific computing and artificial intelligence.The deep integration of these two fields has jointly fostered a data-driven paradigm for scientific research.As a representative of artificial intelligence technology,machine learning has brought unprecedented opportunities for computational materials design,with current applications mainly focusing on property prediction,synthesis prediction,knowledge discovery,and generative inverse design.This article will briefly describe the research progress in this field,and look ahead to the future directions and challenges.

machine learningmaterials designmaterials synthesisgenerative model

赵纪军

展开 >

华南师范大学物理学院 广州 510006

机器学习 材料设计 材料合成 生成模型

2024

物理
中国物理学会 中国科学院物理研究所

物理

北大核心
影响因子:0.257
ISSN:0379-4148
年,卷(期):2024.53(7)