首页|基于DTM模型与共词分析法的主题挖掘与演化分析——以智慧物流研究为例

基于DTM模型与共词分析法的主题挖掘与演化分析——以智慧物流研究为例

扫码查看
随着物联网、大数据、云计算、5G和人工智能等新兴技术的不断发展,我国物流业正逐渐由传统物流向"智慧物流"转变。为探究国内智慧物流领域的研究热点和研究主题的发展演化趋势,文中选取2010-2023年间国内智慧物流研究相关文献,并将其划分为4个时间段,结合DTM动态主题模型和共词分析方法对其进行主题挖掘、热点主题识别和主题演化趋势分析。研究结果表明,物流专业人才培养在2018年后一直是国内智慧物流领域研究的重点,而物联网、大数据、云计算、人工智能等现代新兴技术自问世以来一直都是国内智慧物流领域研究的重点。由此可见,加强人才培养和现代新兴技术的攻关力度,是今后我国物流业转型升级的关键。
Topic Mining and Evolution Analysis Based on DTM Model and Co-word Analysis——Take Intelligent Logistics Research as an Example
With the continuous development of newly-developing technologies such as the Internet of Things,big data,cloud computing,5G and artificial intelligence,China's logistics industry is gradually convert from traditional logistics to"intelligent logistics".In order to explore the development and evolution trend of research hotspots and research topics in the field of domestic intelligent logistics,the literature related to the research of smart logistics in China from 2010 to 2023 is selected and divided into four time stages,and combined with DTM dynamic topic model and co-word analysis method,the topic mining,hot topic recognition and theme evolution trend analysis are carried out.The research results show that the training of logistics professionals has been the focus of research in the field of domestic intelligent logistics since 2018,and modern newly-developing technologies such as the Internet of Things,big data,cloud computing,and artificial intelligence have been the focus of research in the field of domestic intelligent logistics since their advent.It can be seen that strengthening talent training and tackling modern emerging technologies are the key to the transformation and upgrading of China's logistics industry in the future.

DTM modelco-word analysistopic miningevolutionary analysisintelligent logistics

龙祖文、王静、严红

展开 >

武汉科技大学 管理学院,湖北 武汉 430065

DTM模型 共词分析 主题挖掘 演化分析 智慧物流

湖北省教育厅社会科学研究重点项目

20D024

2024

物流工程与管理
中国仓储协会 全国商品养护科技情报中心站

物流工程与管理

影响因子:0.412
ISSN:1674-4993
年,卷(期):2024.46(1)
  • 20