首页|客户等级划分视阈下的车辆路径遗传算法研究

客户等级划分视阈下的车辆路径遗传算法研究

扫码查看
针对当前车辆路径规划算法存在的车辆满载率低、车辆路径求解时间长、车辆配送成本高的问题,文中设计了考虑客户等级划分的车辆路径遗传算法求解过程。在描述车辆路径相关问题和函数的基础上,给出相关假设和约束条件,确定目标函数并考虑客户等级划分,然后构建时间窗车辆路径模型。采用遗传算法,通过染色体编码生成初始种群,再通过选择、交叉以及变异输出最优解,从而求解时间窗车辆路径。实验结果表明:该方法能够有效提升车辆满载率,并缩短求解时间、降低配送成本。
Research on Vehicle Routing Genetic Algorithm from the Perspective of Customer Level Division
In response to the problems of low vehicle load factor,long vehicle path solving time and high vehicle delivery cost in current vehicle path planning algorithms,this paper designs a vehicle path genetic algorithm solution process that considers customer level division.On the basis of describing vehicle routing related problems and functions,relevant assumptions and constraints are given,the objective function is determined,and customer level division is considered.Then,a time window vehicle routing model is constructed.Using genetic algorithm,an initial population is generated through chromosome encoding,and then the optimal solution is output through selection,crossover,and mutation to solve the time window vehicle path.The experimental results show that this method can effectively improve the vehicle's full load rate,shorten the solution time,and reduce delivery costs.

vehicle routing problemcustomer level divisiongenetic algorithmfitness functionmutation probability

王力锋、姚源果、周万洋、刘抗英

展开 >

百色学院,广西 百色 533000

澳门科技大学,中国 澳门 999078

车辆路径问题 客户等级划分 遗传算法 适应度函数 变异概率

教育部人文社会科学研究项目

21YJAZH098

2024

物流工程与管理
中国仓储协会 全国商品养护科技情报中心站

物流工程与管理

影响因子:0.412
ISSN:1674-4993
年,卷(期):2024.46(1)
  • 15