首页|基于两阶段启发式算法的省电力物资周转库选址-路径优化研究

基于两阶段启发式算法的省电力物资周转库选址-路径优化研究

扫码查看
省电力物资周转库是仓储网络架构的关键节点,文中研究带库存容量限制的周转库选址与考虑时间窗和装载量约束的车辆配送路径优化的组合决策问题,构建以配送总成本最小为目标的选址-路径问题模型,设计两阶段启发式算法进行求解。第一阶段设计聚类-重心-搜索算法,求解带库存容量限制的省周转库选址问题;第二阶段采用自适应大邻域搜索算法,解决考虑时间窗和装载量约束车辆配送路径优化问题。基于S省2022 年历史物流数据和已有仓储资源规模,采用两阶段启发式算法确定省电力物资周转库选址和配送路径。结果表明该算法能够有效降低仓储网络的总配送成本。
Research on Location-routing Problem of Provincial Power Material Turnover Warehouse Based on Two-stage Heuristic Algorithm
The provincial power material turnover warehouse is the key node of the warehousing network architecture.The combinatorial decision-making problem of the location of the turnover warehouse with inventory capacity constraints and the vehicle distribution path optimization considering time window and loading capacity constraints is studied.A location-routing problem model with the goal of minimizing the total cost of distribution is constructed,and a two-stage heuristic algorithm is designed to solve the problem.In the first stage,a clustering-gravity-search algorithm is designed to solve the location problem of provincial turnover warehouse with inventory capacity constraints.In the second stage,the adaptive large neighborhood search algorithm is used to solve the problem of vehicle distribution path optimization considering time window and loading constraints.Based on the historical logistics data of S province in 2022 and the scale of existing storage resources,a two-stage heuristic algorithm is used to determine the location and distribution path of the provincial power material turnover warehouse.The results show that the algorithm can effectively reduce the total distribution cost of the storage network.

power materialslocation-routing problemK-means clusteringgravity methodadaptive large neighborhood search

张正利、杜国政、李涛、曹刚

展开 >

国网山东省电力公司物资公司,山东 济南 250001

电力物资 选址-路径问题 K-means聚类 重心法 自适应大邻域搜索算法

国家电网山东省电力公司科技项目(2023)

2024

物流工程与管理
中国仓储协会 全国商品养护科技情报中心站

物流工程与管理

影响因子:0.412
ISSN:1674-4993
年,卷(期):2024.46(3)
  • 9