首页|LSTM和GRU模型对湖北省物流需求预测性能比较研究

LSTM和GRU模型对湖北省物流需求预测性能比较研究

扫码查看
预测物流需求是提高和优化物流供应链效率和降低成本的关键因素。文中以湖北省物流需求为应用场景,采用LSTM和GRU网络对湖北省物流需求量进行预测,根据误差对比发现,LSTM网络的性能显著优于GRU网络,拥有更高的预测精度。
Comparative Study of LSTM and GRU Models on the Prediction Performance of Logistic Demand in Hubei Province
Predicting logistics demand is a key factor in improving and optimizing logistics supply chain efficiency and reducing costs.This paper takes the logistics demand of Hubei Province as the application scenario,and uses LSTM and GRU networks to predict its logistics demand.According to the error comparison,it is found that the performance of LSTM network is significantly better than that of GRU network,and it has higher prediction accuracy.

logistics predictingLSTM networkGRU network

王泽宇、张志清

展开 >

武汉科技大学,湖北 武汉 430065

物流预测 LSTM网络 GRU网络

2024

物流工程与管理
中国仓储协会 全国商品养护科技情报中心站

物流工程与管理

影响因子:0.412
ISSN:1674-4993
年,卷(期):2024.46(4)
  • 8