首页|供应链合作伙伴信息在供应链金融信用风险预测中的作用——基于多机器学习模型的比较分析

供应链合作伙伴信息在供应链金融信用风险预测中的作用——基于多机器学习模型的比较分析

扫码查看
供应链金融是中小企业缓解融资困难的有效途径。为缓解供应链金融信用风险预测面临的信息不对称和样本选择偏差等问题,文中将供应链合作伙伴信息引入风险指标体系,基于2010-2021 年A股上市企业披露数据,通过随机森林、XGBoost、逻辑回归和MLP四种机器学习模型进行比较分析。结果显示,合作伙伴信息的使用提高了供应链金融信用风险预测的准确性与稳定性。最后通过Lime可解释性分析,发现合作伙伴的速动比率、销售利润率、资产负债率等6 个指标是供应链合作伙伴信息中影响信用风险预测的主要因素。
The Role of Supply Chain Partner Information in Credit Risk Prediction of Supply Chain Finance——A Comparative Analysis Based on Multiple Machine Learning Models
Supplychainfinance(SCF)servesasaneffectivemeansforsmallandmedium-sized enterprises(SMEs)to alleviate financing difficulties.To address challenges in predicting credit risks in SCF,such as information asymmetry and sample selection bias,this study incorporates supply chain partner information into the risk indicator system.Utilizing disclosed data from A-share listed companies between 2010 and 2021,a comparative analysis is conductedby by using four machine learning models:random forest,XGBoost,logistic regression,and MLP.The results demonstrate that the inclusion of partner information enhances the accuracy and stability of credit risk prediction in SCF.Finally,through Lime interpretability analysis,six indicators,including partner's quick ratio,sales profit margin,and asset-liability ratio,are identified as the primary influencing factors for credit risk prediction in supply chain partner information.

supply chain financesupply chain partnerscredit riskmachine learninginterpretability analysis

张道海、杨晨

展开 >

江苏大学 管理学院,江苏 镇江 212013

供应链金融 供应链合作伙伴 信用风险 机器学习 可解释性分析

江苏省高等学校哲学社会科学研究重大项目江苏省研究生科研与实践创新计划

2020SJZDA063SJCX22_1838

2024

物流工程与管理
中国仓储协会 全国商品养护科技情报中心站

物流工程与管理

影响因子:0.412
ISSN:1674-4993
年,卷(期):2024.46(4)
  • 18