首页|基于GWO-PSO算法的堆垛机混合作业优化研究

基于GWO-PSO算法的堆垛机混合作业优化研究

扫码查看
为减少堆垛机执行混合作业的运行时间,建立堆垛机运行时间最小的数学模型,并提出一种改进的GWO-PSO算法进行求解。首先,在初始化阶段,将灰狼个体随机分为若干群组,按照标准GWO算法进行独立寻优,推举产生首领狼王,然后采用PSO算法的位置更新方式对寻优结果进行更新,保证了种群的多样性和算法的寻优速度,接着引入速度交换算子进行离散化处理,并通过设置阈值解决了算法易陷入局部最优的问题,最后通过实例仿真分析,验证了GWO-PSO算法的有效性。
Research on Mixed Operation Optimization of Piler Based on GWO-PSO Algorithm
In order to reduce the running time of the mixed operation of the piler,the mathematical model of the minimum running time of the piler is established,and an improved GWO-PSO algorithm is proposed to solve it.Firstly,in the initialization stage,grey wolves are randomly divided into several groups,and the leader,wolf king,is selected for independent optimization according to the standard GWO algorithm.Secondly,the position update mode of the PSO algorithm is used to update the optimization results to ensure the diversity of the population and the optimization speed of the algorithm.Thirdly,the velocity exchange operator is introduced for discretization,and the problem that the algorithm is easy to fall into local optimal is solved by setting the threshold value.Finally,the effectiveness of the GWO-PSO algorithm is verified by an example simulation.

mixed operationgrey wolf optimization algorithmparticle swarm optimization algorithmGWO-PSO algorithm

贾欣裕、宁方华、李仁旺、周恒

展开 >

浙江理工大学 机械工程学院,浙江 杭州 310018

混合作业 灰狼优化算法 粒子群优化算法 GWO-PSO算法

2024

物流工程与管理
中国仓储协会 全国商品养护科技情报中心站

物流工程与管理

影响因子:0.412
ISSN:1674-4993
年,卷(期):2024.46(5)
  • 15