首页|基于深度学习和强化学习的智能物流配送系统优化研究

基于深度学习和强化学习的智能物流配送系统优化研究

扫码查看
针对物流配送过程,传统路径优化算法对交通拥堵、天气状况、环境因素不敏感,导致车辆在物流配送中出现效率低下、意外状况多的问题。文中提出基于深度学习和强化学习的物流配送路径优化算法,以自编码神经网络和样本数据为基础,训练模型并预测其替代价值,并将其与道路网络融合,形成加权路网。文中采用深度学习与强化学习相结合的方法,通过持续学习与优化,使系统能够依据实际情况,动态调整配送任务,并在短时间内逐步提高配送效率。
Research on the Optimization of Intelligent Logistics Distribution System Based on Deep Learning and Reinforcement Learning
Aimming at the logistics distribution process,the traditional path optimization algorithm is not sensitive to traffic congestion,weather conditions,and environmental factors,which leads to inefficiency and unexpected conditions of vehicles in logistics distribution. This paper proposes a path optimization algorithm for logistics distribution based on deep learning and reinforcement learning,which is based on self-coding neural network and sample data,trains the model and predicts its substitution value,and fuses it with the road network to form a weighted road network. This paper adopts the method of combining deep learning and reinforcement learning,through continuous learning and optimization,so that the system can dynamically adjust the distribution task according to the actual situation,and gradually improve the distribution efficiency in a short period of time.

deep learningreinforcement learninglogistics distributionroute scheduling optimization

郭灿波

展开 >

郑州工业应用技术学院,河南 郑州 451150

深度学习 强化学习 物流配送 路径调度优化

2024

物流工程与管理
中国仓储协会 全国商品养护科技情报中心站

物流工程与管理

影响因子:0.412
ISSN:1674-4993
年,卷(期):2024.46(8)