首页|基于少样本学习的加密流量分类方法

基于少样本学习的加密流量分类方法

扫码查看
加密流量分类是识别加密流量背后运行的服务、应用、协议等方面的技术,以提高网络服务质量或提供网络安全保障.主流的加密流量分类方案通过在大规模数据集上进行训练实现可靠的分类性能.然而,随着互联网技术的持续发展,网络流量规模、计算节点、网络服务等持续增长,出现大量的针对不同类别的加密流量分类需求,收集并标注足够多的加密流量变得越来越不切实际.因此,研究一种能够利用较少加密流量样本进行准确的加密流量分类,并且能够将模型快速推广的技术至关重要.提出一种基于少样本学习的加密流量分类方法,该方法基于元学习思想对加密流量分类任务进行模拟和优化.此外,利用预训练的卷积神经网络模型作为特征提取器,并基于卷积神经网络中神经元特有的计算结构介绍了一种新颖的参数分解方法,让模型能够快速适应不同任务的数据分布.在文章的最后,设置了 N-way K-shot的对照实验,实验表明文章提出的方法在K=10时准确率稳定在98%左右,相较于参考模型能够使用更少样本得到更高准确率.
A Classification Method for Encrypted Traffic Based on Few-shot Learning
Encryption traffic classification is the process of identifying the service,applications,and protocols running behind network encryption traffic in order to improve the quality of network service or provide the security as-surance of networks.Mainstream encryption traffic classification schemes are conducted to train and achieve reliable performance by large datasets.However,with the development of Internet technology,network traffic,calculation nodes,and network services,there are the requirements of different encryption traffic allocations,it becomes more and more impractical to collect and label enough encryption traffic.Therefore,it is crucial to study a technique that can accurately classify encrypted traffic with fewer encryption traffic samples and quickly generalize the model.In this paper,a novel method for encrypted traffic classification based on few-shot learning is proposed.This method simu-lates and optimizes the traffic classification task based on the principles of meta-learning.Moreover,the pre-trained convolutional neural network(CNN)model is used to extract the feature,a novel parameter decomposition method is introduced on the basis of the special computational architecture of CNN to rapidly adapt to the data distribution on various tasks.Finally,through the comparative experiments with N-way and K-shot setting,the experimental results show that the accuracy of the proposed method achieves by 98%with the K coefficient of 10,the accuracy of the few-shot learning method is higher than that of the reference model.

encrypted traffic classificationfeature learningmeta learningfew-shot learningVPN identifica-tion

康璐、吉庆兵、谈程、罗杰、倪绿林

展开 >

中国电子科技集团公司第三十研究所,成都 610041

加密流量分类 特征学习 元学习 少样本学习 VPN识别

国家自然科学基金联合基金项目

U22B2025

2023

ISSN:
年,卷(期):2023.1(3)
  • 24