首页|融合真实世界物理信息的AIGC

融合真实世界物理信息的AIGC

扫码查看
随着提示和人类反馈强化学习的引入,通过加速实验流程和提供高精度预测,生成式人工智能已经广泛应用于物理、化学等理工领域中,正逐步革新科学研究的传统模式.尽管如此,仅从有限的标注样本出发,训练一种可以泛化至任意相似场景的鲁棒生成式人工智能似乎仍然遥不可及.这一挑战本质上源于物理信息在现有人工智能生成内容(Artificial intelligence generative content,AIGC)的实践中尚未得到充分融合.在过去受计算资源不足等客观因素阻碍的情况下,AIGC在物理层面上的认知能力始终未能取得显著的进展.如今,伴随硬件升级带来的OpenAI,Google等展现的智能进步,上述局面有望改观.本文全面梳理了物理信息与AIGC结合的最新研究动态,包括物理信息的多种来源、融合框架及具体案例分析,并总结了该领域面临的前沿挑战与潜在发展机遇.
AIGC with integrating real-world physical information
With the introduction of prompt and reinforcement learning from human feedback(RL-HF),generative artificial intelligence can accelerate the experimental process and provide high-preci-sion prediction and has been widely used in physics,chemistry and other science and technology fields,which has gradually revolutionizing the traditional model of scientific research.However,starting from only a limited number of labeled samples,training a robust generative artificial intelli-gence(GAI)that can generalize to arbitrarily similar scenarios still seems out of reach.This challenge essentially stems from the fact that physical information has not been fully integrated in existing artifi-cial intelligence generative content(AIGC)practices.The cognitive ability of AIGC on the physical level has been hindered by objective factors such as insufficient computing resources in the past,and has not been able to make significant progress.Nowadays,with OpenAI,Google,and others demon-strating the smart advances that come with hardware upgrades,the above situation is expected to change.This paper comprehensively reviewed the latest research developments in the integration of physical information and AIGC,including multiple sources of physical information,integration frame-work and specific case studies.The frontier challenges and potential development opportunities in this field were summarized.

generative artificial intelligenceartificial intelligence generative contentphysical in-formation

余向阳、梁纪恒、余自如、谢祖杰

展开 >

中山大学物理学院,广东广州 510275

中山大学光电材料与技术国家重点实验室,广东广州 510275

中山大学南昌研究院,江西南昌 330096

华南理工大学自动化科学与工程学院,广东广州 510641

展开 >

生成式人工智能 AIGC 物理信息

2024

物理实验
东北师范大学

物理实验

影响因子:0.573
ISSN:1005-4642
年,卷(期):2024.44(9)