首页|基于邻域信息的复杂网络节点重要性评估方法设计

基于邻域信息的复杂网络节点重要性评估方法设计

扫码查看
在复杂网络中准确识别影响力节点,对网络管理和网络安全至关重要.局部中心性方法简明易用,但忽略了邻居节点间的拓扑关系,不能提供全局最优结果.提出了一种关联节点连边关系和拓扑结构的重要节点评估方法,该方法首先综合应用H指数和信息熵对节点进行评估,在此基础上代入节点的结构洞特征,即在关注节点自身质量和邻居节点信息量的同时,考虑了其"桥接"属性.采用疾病传播模型对算法进行验证,应用肯德尔(Kendall)相关系数、互补累积分布函数以及传播影响力来验证算法的有效性与适用性.在 6 个真实网络数据集上的仿真结果表明,在识别和排序网络中的关键节点上,所提方法比传统中心性方法更准确.
Design of nodes importance assessment method for complex network based on neighborhood information
Accurate identification of influential nodes in complex networks is crucial for network management and net-work security.The local centrality method is concise and easy to use,but ignores the topological relationship between neighboring nodes and cannot provide globally optimal results.A node importance assessment method was proposed to correlate the node edge relationship and topology,which firstly applied the H-index and information entropy to assess the nodes,then combined the structural holes of the nodes with the structural characteristics of the nodes,and took into ac-count the attribute of"bridging"while focusing on the node's own quality and the amount of information about the neigh-boring nodes.The algorithm was validated by simulating the propagation process using the SIR model,and the Kendall correlation coefficient,complementary cumulative distribution function and propagation influence were applied to vali-date the validity and applicability of the method.Comparison of the experimental results on six real network datasets shows that the proposed method is more accurate than the traditional centrality methods in identifying and ordering the key nodes in the network.

complex networknode importanceSIR modelinformation entropyH-indexstructural hole

李幸、詹杰、任保全、朱思奇

展开 >

湖南科技大学物理与电子科学学院,湖南 湘潭 411201

中国电子设备系统工程公司研究所,北京 100141

复杂网络 节点重要性 SIR模型 信息熵 H指数 结构洞

国家自然科学基金移动专用网络国家工程研究中心项目

61875054BJTU20221102

2024

物联网学报
人民邮电出版社有限公司

物联网学报

ISSN:2096-3750
年,卷(期):2024.8(1)
  • 38