首页|复杂晶格动力学与能源材料的中子散射研究

复杂晶格动力学与能源材料的中子散射研究

扫码查看
晶格动力学是众多前沿能源材料的重要物理基础。许多优秀的能源材料具有亚晶格嵌套结构,其晶格动力学非常复杂,这给理解材料的物理机制带来了巨大挑战。中子散射技术兼具高的能量和动量分辨率,可以同时表征物质结构和复杂晶格动力学,近年来在研究能源材料物理机制方面发挥了重要作用。本文首先详细介绍了能源材料研究中常用的几种中子散射技术,包括中子衍射、中子全散射、准弹性中子散射以及非弹性中子散射等。然后,综述了近年来以中子散射为主要表征方法在能源材料领域所取得的一些重要研究进展,包括超离子热电材料中的超低晶格热导率、固态电解质中的离子扩散机制、压卡材料中的塑晶态相变与构型熵、光伏材料中的晶格非谐性与载流子输运以及磁卡制冷材料中的一级磁-结构相变等。在这些能源转换与存储材料中,晶格动力学并不是独立起作用的,它们在宏观物理性质中的作用总是通过不同自由度如亚晶格、电荷、自旋等的复杂关联作用或相互耦合来实现的。通过这些典型实例,希望为能源材料与晶格动力学的进一步深入研究提供参考。
Neutron scattering studies of complex lattice dynamics in energy materials
Lattice dynamics play a crucial role in understanding the physical mechanisms of cutting-edge energy materials.Many excellent energy materials have complex multiple-sublattice structures,with intricate lattice dynamics,and the underlying mechanisms are difficult to understand.Neutron scattering technologies,which are known for their high energy and momentum resolution,are powerful tools for simultaneously characterizing material structure and complex lattice dynamics.In recent years,neutron scattering techniques have made significant contributions to the study of energy materials,shedding light on their physical mechanisms.Starting from the basic properties of neutrons and double differential scattering cross sections,this review paper provides a detailed introduction to the working principles,spectrometer structures,and functions of several neutron scattering techniques commonly used in energy materials research,including neutron diffraction and neutron total scattering,which characterize material structures,and quasi-elastic neutron scattering and inelastic neutron scattering,which characterize lattice dynamics.Then,this review paper presents significant research progress in the field of energy materials utilizing neutron scattering as a primary characterization method.1)In the case of Ag8SnSe6 superionic thermoelectric materials,single crystal inelastic neutron scattering experiments have revealed that the"liquid-like phonon model"is not the primary contributor to ultra-low lattice thermal conductivity.Instead,extreme phonon anharmonic scattering is identified as a key factor based on the special temperature dependence of phonon linewidth.2)Analysis of quasi-elastic and inelastic neutron scattering spectra reveals the changes in the correlation between framework and Ag+sublattices during the superionic phase transition of Ag8SnSe6 compounds.Further investigations using neutron diffraction and molecular dynamics simulations reveal a new mechanism of superionic phase transition and ion diffusion,primarily governed by weakly bonded Se atoms.3)Research on NH4I compounds demonstrates a strong coupling between molecular orientation rotation and lattice vibration,and the strengthening of phonon anharmonicity with temperature rising can decouple this interaction and induce plastic phase transition.This phenomenon results in a significant configuration entropy change,showing its potential applications in barocaloric refrigeration.4)In the CsPbBr3 perovskite photovoltaic materials,inelastic neutron scattering uncovers low-energy phonon damping of the[PbBr6]sublattice,influencing electron-phonon coupling and the band edge electronic state.This special anharmonic vibration of the[PbBr6]sublattice prolongs the lifetime of hot carriers,affecting the material's electronic properties.5)In MnCoGe magnetic refrigeration materials,in-situ neutron diffraction experiments highlight the role of valence electron transfer between sublattices in changing crystal structural stability and magnetic interactions.This process triggers a transformation from a ferromagnetic to an incommensurate spiral antiferromagnetic structure,expanding our understanding of magnetic phase transition regulation.These examples underscore the interdependence between lattice dynamics and other degrees of freedom in energy conversion and storage materials,such as sublattices,charge,and spin.Through these typical examples,this review paper can provide a reference for further exploring and understanding the energy materials and lattice dynamics.

neutron scatteringthermoelectric materialssolid-state electrolytesCaloric effects

任清勇、王建立、李昺、马杰、童欣

展开 >

散裂中子源科学中心,东莞 523803

中国科学院高能物理研究所,北京 100049

广东省极端条件重点实验室,东莞 523803

东莞理工学院,中子散射与先进光源科学技术中心,东莞 523000

中国科学院金属研究所,沈阳 110016

上海交通大学物理与天文学院,上海 200240

展开 >

中子散射 热电材料 固态电解质 热卡效应

2025

物理学报
中国物理学会,中国科学院物理研究所

物理学报

北大核心
影响因子:1.038
ISSN:1000-3290
年,卷(期):2025.74(1)