首页|基于图神经网络的代码漏洞检测方法

基于图神经网络的代码漏洞检测方法

Code vulnerability detection method based on graph neural network

扫码查看
使用神经网络进行漏洞检测的方案大多基于传统自然语言处理的思路,将源代码当作序列样本处理,忽视了代码中所具有的结构性特征,从而遗漏了可能存在的漏洞.提出了一种基于图神经网络的代码漏洞检测方法,通过中间语言的控制流图特征,实现了函数级别的智能化代码漏洞检测.首先,将源代码编译为中间表示,进而提取其包含结构信息的控制流图,同时使用词向量嵌入算法初始化基本块向量提取代码语义信息;然后,完成拼接生成图结构样本数据,使用多层图神经网络对图结构数据特征进行模型训练和测试.采用开源漏洞样本数据集生成测试数据对所提方法进行了评估,结果显示该方法有效提高了漏洞检测能力.

陈皓、易平

展开 >

上海交通大学网络空间安全学院,上海200240

漏洞检测 图神经网络 控制流图 中间表示

国家重点研发计划国家重点研发计划

2019YFB14050002017YFB0802900

2021

网络与信息安全学报
人民邮电出版社

网络与信息安全学报

CSTPCD
ISSN:2096-109X
年,卷(期):2021.7(3)
  • 4
  • 2