首页|生成式对抗网络在金融数据中的应用

生成式对抗网络在金融数据中的应用

Application of generative adversarial networks for financial data

扫码查看
数据作为国家基础性战略资源和关键生产要素,是经济社会发展的基础资源和创新引擎.金融行业作为数据的密集型和科技驱动型行业,实现数据资产的优化配置,是促进产业升级的关键因素.但金融数据普遍存在数据分布不均衡、数据信息不对称以及"数据孤岛"等问题,导致数据无法充分发挥其价值.为了克服这些挑战,金融机构积极采用各种生成模型合成高度逼真的数据,以打破数据壁垒和垄断,成为未来金融业发展的趋势和方向.生成式对抗网络(generative adversarial network,GAN)是最流行的模型之一,在各个领域都有不俗的表现.其在金融表格数据生成、金融时间序列生成以及金融欺诈检测等方面也展现出广泛的应用潜力.文章介绍了GAN模型相较其他生成模型在金融领域的优势;对自2014年生成式对抗网络被提出以来的可被应用于金融领域的GAN模型进行整理,并对各模型的原理进行介绍;探讨GAN模型在生成金融表格数据、生成金融时间序列、金融欺诈检测等金融数据领域中的应用实践;最后结合中国的实际情况,分析了GAN在未来面临的挑战及发展方向.
Data,recognized as a fundamental strategic resource and key production factor for a nation,has served as the foundational resource and innovation engine for economic and social development.The financial industry,characterized by its data-intensive and technology-driven nature,necessitates the optimal allocation of data assets to facilitate industrial upgrading.However,financial data commonly exhibits issues such as uneven distribution,in-formation asymmetry,and data silos,which have prevented data from fully realizing its value.To address these challenges,various generative models have been actively adopted by financial institutions to synthesize highly real-istic data,thereby breaking down data barriers and monopolies,and shaping the future trend of the financial indus-try.Among these models,Generative Adversarial Networks(GANs)have emerged as particularly popular,demon-strating impressive performance across various fields and showing great potential in generating financial tabular data,financial time series,and detecting financial fraud.The advantages of the GAN model compared with other generative models in the financial field were analyzed.The GAN models that have been applied to the financial field since Generative Adversarial Networks were proposed in 2014 were presented,and the principles of each model were introduced.The application practice of the GAN model in generating financial tabular data,generating financial time series,and financial fraud detection,as well as other financial data fields,was explored.Finally,the challenges and development direction of GANs for the future were discussed,taking into account the actual situa-tion in China.

generative adversarial networksfintechdata security

崔毅浩、刘森、叶广楠

展开 >

复旦大学金融科技研究院,上海 200433

生成式对抗网络 金融科技 数据安全

中国工程院战略研究与咨询项目上海市自然科学基金国家重点研发计划项目云南省重大科技专项计划

2023-33-1423ZR14049002023YFC3305200202402AD080005

2024

网络与信息安全学报
人民邮电出版社

网络与信息安全学报

CSTPCD
ISSN:2096-109X
年,卷(期):2024.10(3)
  • 3