首页|基于跨流注意力增强中心差分卷积网络的CG图像检测

基于跨流注意力增强中心差分卷积网络的CG图像检测

Cross-stream attention enhanced central difference convolutional network for CG image detection

扫码查看
随着计算机图形学(computer graphics,CG)技术在图像生成领域的日益成熟,创造的图像逼真程度大幅提升.这些技术虽然在日常生活中被广泛应用并带来诸多便利,但同时也有着许多安全隐患,如果使用CG技术生成的伪造图像被恶意使用,在互联网、社交媒体上广泛传播,则可能对个人和企业权益造成损害.提出了一种创新的跨流注意力增强中心差分卷积网络,致力于提高CG图像检测的准确性.模型中构建了一个双流结构,旨在分别从图像中抽取语义特征和非语义的残差纹理特征.每个流中的普通卷积层被中心差分卷积所替代,这一改进使模型能同时提取图像中的像素强度信息和像素梯度信息.此外,通过引入一个跨流注意力增强模块,该模型在全局层面上增强了特征提取能力,并促进了两个特征流之间的互补.实验结果证明,基于跨流注意力增强中心差分卷积网络的CG图像检测方法相比现有方法具有更优的性能.此外,一系列消融实验进一步验证了所提模型设计的合理性.
With the maturation of computer graphics(CG)technology in the field of image generation,the realism of created images has been improved significantly.Although these technologies are widely used in daily life and bring many conveniences,they also come with many security risks.If forged images generated using CG technol-ogy are maliciously used and widely spread on the Internet and social media,they may harm the rights of individu-als and enterprises.Therefore,an innovative cross-stream attention enhanced central difference convolutional net-work was proposed,aiming at improving the accuracy of CG image detection.A dual-stream structure was con-structed in the model,in order to extract semantic features and non-semantic residual texture features from the im-age.Vanilla convolutional layers in each stream were replaced by central difference convolutions,which allowed the model to simultaneously extract pixel intensity information and pixel gradient information from the image.Fur-thermore,by introducing a cross-stream attention enhancement module,the model enhanced feature extraction ca-pability at the global level and promoted complementarity between the two feature streams.Experimental results demonstrate that this method outperforms existing methods.Additionally,a series of ablation experiments further verify the rationality of the proposed model design.

computer graphicsCG image detectioncentral difference convolutionattention mechanism

黄锦坤、黄远航、黄文敏、骆伟祺

展开 >

中山大学计算机学院,广东 广州 510006

广东省信息安全技术重点实验室,广东 广州 510006

计算机图形学 CG图像检测 中心差分卷积 注意力机制

2024

网络与信息安全学报
人民邮电出版社

网络与信息安全学报

CSTPCD
ISSN:2096-109X
年,卷(期):2024.10(6)