首页|异空域飞行器集群的协同定位分簇优化方法

异空域飞行器集群的协同定位分簇优化方法

A Clustering-based Optimization Method of Cooperative Localization for Aircraft Clusters in Different Air Domains

扫码查看
针对异空域场景中飞行器集群系统的协同导航优化问题,开展了异空域飞行器集群的协同定位分簇优化方法研究.首先根据不同空域对异空域飞行器集群进行初始划分,在此基础上提出了用于协同定位优化的分簇方案,随后建立适用于飞行器分簇集群的协同定位模型,最终实现对于低空域飞行器集群卫星导航拒止环境中的协同定位性能提升.优化后的低空域飞行器集群系统定位精度相比于未进行协同分簇优化时提高了25.60%,分簇方差比判据相较于固定分簇方案提升约49.53%,证明了所提方法的有效性.与传统集群协同算法相比,所提出的协同定位分簇优化方案能有效提高大规模跨域集群系统的分簇性能与协同定位精度,能更好适应现实低空场景中的卫星拒止等因素影响,具备一定的应用价值.
This study addresses the optimization of collaborative navigation for large-scale aircraft clusters in different air domains scenarios,focusing on clustering-based optimization for improving cooperative localization.Initially,the aircraft clusters are partitioned based on different air domains.Building on this,a clustering scheme is proposed to optimize localization.Subsequently,a cooperative localization model tailored to clustering scenarios is developed and achieves significant improvements in the localization performance of low-air-domain aircrafts in Global Navigation Satellite System(GNSS)-denial environment,increasing positioning accuracy by 25.60%compared to unoptimized systems.Furthermore,the clustering variance ratio is improved by approximately 49.53%compared to fixed clustering methods,demonstrating the effectiveness of the proposed approach.Compared to traditional cooperation methods of clusters,this cooperative clustering optimization scheme enhances both clustering performance efficiency and localization accuracy in large-scale cross-domain systems.It's better suited to address challenges like GNSS-denial in low air scenarios,offering potential for applications.

Different Air Domains ScenarioAircraft ClustersClustering-based OptimizationCoop-erative LocalizationMultidimensional ScalingTime Difference of Arrival

王思晨、王融、丛瞿育、熊智、刘宇轩

展开 >

南京航空航天大学自动化学院导航研究中心,南京 211106

异空域场景 集群系统 分簇优化 协同导航 多维标度 到达时差

2024

无人系统技术

无人系统技术

ISSN:
年,卷(期):2024.7(6)