首页|基于PERTA-MATD3的多无人艇协同拒止策略研究

基于PERTA-MATD3的多无人艇协同拒止策略研究

Research on Cooperative Denial Strategy of Multiple Unmanned Surface Vehicles Based on PERTA-MATD3

扫码查看
海上无人艇在军事对抗、海事边防等领域具有重要战略意义,针对拒止任务中的协同作战、目标分配及博弈对抗决策等问题,提出一种作战环境下多无人艇对可疑目标船只的拒止策略方法.首先,基于多无人艇协同拒止任务背景进行作战环境建模;然后,构建多对多场景下的拒止方法框架,根据作战态势评估并基于匈牙利算法进行目标分配,并结合多智能体深度确定性策略梯度算法、双延迟-确定策略梯度算法与优先经验回放机制,提出基于优先经验回放的目标分配耦合多智能体强化学习方法;最后,搭建仿真环境,采用集中式训练、分布式执行架构实现对拒止策略的训练与测试.实验结果表明,提出的策略方法能够在不同无人艇数量的场景下有效完成对可疑目标的拒止,并在2对2场景下取得94%的任务成功率及584的步长消耗,在收敛性和学习效率等方面优于其他方法,为多无人艇的协同决策提供了理论参考.
Unmanned surface vehicles(USVs)have significant strategic importance in maritime military confrontation and maritime border defense.To address the challenges in denial tasks,including cooperative operations,target allocation,and game-theoretic decision-making,a cooperative denial strategy for multiple USVs against suspicious target vessels in a combat environment is proposed.Firstly,the combat environment is modeled based on the context of multi-USV cooperative denial tasks.Secondly,a denial framework in many-to-many scenarios is established,where the denial targets are assigned based on the combat situation assessment and the Hungarian algorithm.Additionally,a multi-agent reinforcement learning method coupling target assignment with prioritized experience replay is proposed,integrating the Multi-Agent Deep Deterministic Policy Gradient(MADDPG),Twin Delayed Deep Deterministic Policy Gradient(TD3),and prioritized experience replay mechanism.Finally,a simulation environment is constructed,and the denial strategy is trained and tested using a centralized training and decentralized execution architecture.The experimental results demonstrate that the proposed denial strategy effectively completes the denial tasks against suspicious targets under various numbers of USVs.Specifically,it achieves a 94%task success rate and 584 step consumption in two-on-two scenarios,while outperforming other methods in terms of convergence and learning efficiency.This provides a theoretical reference for cooperative decision-making involving multiple USVs.

Multiple Unmanned Surface VehiclesCooperative DenialDeep Reinforcement Learn-ingPERTA-MATD3Target Assignment

陶伟宇、吴翔宇、魏长赟

展开 >

河海大学机电工程学院,常州 213200

多无人艇 协同拒止 深度强化学习 PERTA-MATD3 目标分配

2024

无人系统技术

无人系统技术

ISSN:
年,卷(期):2024.7(6)