首页|基于BP神经网络的沥青路面沉陷发展预测

基于BP神经网络的沥青路面沉陷发展预测

扫码查看
为提高沥青路面的检测效率,以某沥青路面某桩号断面的路面沉陷数据为研究对象,基于BP神经网络,对高速公路沥青路面沉陷发展进行了拟合及预测.试验结果表明,BP神经网络模型能够有效预测路面沉陷,随着训练组数据的增加,神经网络模型的预测精度不断提高;基于工程效率和预测精度方面的考虑,建议选用32组数据作为最佳样本数;BP神经网络模型的预测精度显著高于二次曲线法的,相对误差降低了 5%.该研究验证了 BP神经网络模型应用于路面沉陷发展预测的可行性和有效性,为探究高速公路沥青路面沉陷发展提供了新方法.
Prediction of asphalt pavement subsidence development based on BP neural network
To enhance the efficiency of asphalt pavement inspection,the pavement subsidence data from a specific section and station number of an asphalt road were taken as research targets.A fitting and prediction of the development of asphalt road subsidence on the highway was conducted based on the BP neural network.The results showed that BP neural network model can effectively predict road subsidence.The predictive accuracy of the neural network model was steadily improved with an increase in the training data set.Considering engineering efficiency and predictive accuracy,it was recommended to use 32 sets of data as the optimal sample size.The predictive accuracy of the BP neural network model was significantly higher than that of the quadratic curve method,with a relative error reduction of up to 5%.The study confirmed the feasibility and effectiveness of the BP neural network model in predicting the development of pavement subsidence,providing a new method for investigating the development of asphalt pavement subsidence on highways.

road engineeringasphalt pavement subsidenceBP neural networkprediction model

曹阳、杨傲、翟博渊、聂付松、文家刚

展开 >

北京市政路桥股份有限公司,北京 100032

武昌工学院 城市建设学院,武汉 430065

北京中岩大地科技股份有限公司,北京 100041

中南勘察基础工程有限公司,武汉 430040

展开 >

道路工程 沥青路面沉陷 BP神经网络 预测模型

湖北省教育厅科学技术研究计划厅局级指导项目

B2022353

2024

无损检测
中国机械工程学会 上海材料研究所

无损检测

CSTPCD
影响因子:0.558
ISSN:1000-6656
年,卷(期):2024.46(4)
  • 14