首页|基于深度学习的超声B扫描图像处理缺陷识别实验研究

基于深度学习的超声B扫描图像处理缺陷识别实验研究

Experimental Study on Defect Recognition in Ultrasonic B-scan Image Processing Based on Deep Learning

扫码查看
本文旨在利用深度学习图像处理技术,提出一种基于YOLOv5网络结构的缺陷检测算法对超声B扫描图像进行缺陷识别实验研究.通过对工件进行线性阵列相控阵超声检测,连续采集到多幅B扫描图像或实时采集视频数据,并对图像进行预处理和增强操作.在此基础上,构建神经网络模型,并对预处理后的大量数据集进行标定.使用Pytorch深度学习框架进行数据集训练,结果表明改进的YOLOv5算法对缺陷的目标检测召回率识别达到96.2%,对底波缺失的目标检测召回率达到96.3%.实验结果表明,基于改进的YOLOv5算法在mAP0.5指标上有1.4%的提升,在mAP0.5:0.95指标上有6%的检测性能提升.
This article aims to use deep learning image processing technology to propose a defect detec-tion algorithm based on YOLOv5 network structure to conduct experimental research on defect identifica-tion in ultrasonic B-scan images.By performing linear array phased array ultrasonic testing on the work-piece,multiple B-scan images are continuously collected or video data is collected in real time,and the ima-ges are preprocessed and enhanced.On this basis,a neural network model is constructed and a large num-ber of preprocessed data sets are calibrated.Using the Pytorch deep learning framework for data set train-ing,the results show that the improved YOLOv5 algorithm has a recall rate of 96.2%for defective target detection,and a recall rate of 96.3%for target detection with missing bottom waves.Experimental results show that the improved YOLOv5 algorithm has a 1.4%improvement in the mAP0.5 index and a 6%im-provement in detection performance in the mAP0.5:0.95 index.

Ultrasound detectionYOLOv5Deep learningTarget detectionB-scan image

冯玮

展开 >

中国航空工业集团公司北京长城计量测试技术研究所,北京 100095

超声检测 YOLOv5 深度学习 目标检测 B扫描图像

基础加强计划技术领域基金

2021-JCJQ-JJ-1269

2024

无损探伤
辽宁仪表研究所有限责任公司

无损探伤

影响因子:0.126
ISSN:1671-4423
年,卷(期):2024.48(4)