首页|Beyond biogeographic patterns:Processes shaping the microbial landscape in soils and sediments along the Yangtze River

Beyond biogeographic patterns:Processes shaping the microbial landscape in soils and sediments along the Yangtze River

扫码查看
Deciphering biogeographic patterns of microorganisms is important for evaluating the maintenance of microbial diversity with respect to the ecosystem functions they drives.However,ecological processes shaping distribution patterns of micro-organisms across large spatial-scale watersheds remain largely unknown.Using Illumina sequencing and multiple statistical methods,we characterized distribution patterns and maintenance diversity of microorganisms(i.e.,archaea,bacteria,and fungi)in soils and sediments along the Yangtze River.Distinct microbial distribution patterns were found between soils and sediments,and microbial community similarity significantly decreased with increasing geographical distance.Physicochemical properties showed a larger effect on microbial community composition than geospatial and climatic factors.Archaea and fungi displayed stronger species replacements and weaker environmental constraints in soils than that in sediments,but opposite for bacteria.Archaea,bacteria,and fungi in soils showed broader environmental breadths and stronger phylogenetic signals compared to those in sediments,suggesting stronger environmental adaptation.Stochasticity dominated community as-semblies of archaea and fungi in soils and sediments,whereas determinism dominated bacterial community assembly.Our results have therefore highlighted distinct microbial distribution patterns and diversity maintenance mechanisms between soils and sediments,and emphasized important roles of species replacement,environmental adaptability,and ecological assembly processes on microbial landscape.Our findings are helpful in predicting loss of microbial diversity in the Yangtze River Basin,and might assist the establishment of environmental policies for protecting fragile watersheds.

environmental breadthenvironmental constraintphylogenetic signalspecies replacementstochasticity versus determinism

Wenjie Wan、Geoffrey M.Gadd、Ji-Dong Gu、Wenzhi Liu、Peng Chen、Quanfa Zhang、Yuyi Yang

展开 >

Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden,Chinese Academy of Sciences,Wuhan,China

Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station,Chinese Academy of Sciences & Hubei Province,Wuhan,China

Geomicrobiology Group,School of Life Sciences,University of Dundee,Dundee,Scotland,UK

State Key Laboratory of Heavy Oil Processing,State Key Laboratory of Petroleum Pollution Control,China University of Petroleum,Beijing,China

Environmental Science and Engineering Group,Guangdong Technion-Israel Institute of Technology,Guangdong,China

展开 >

National Natural Science Foundation of ChinaYouth Innovation Promotion Association of the Chinese Academy of SciencesNational Science and Technology Fundamental Resources Investigation Program of ChinaOpen Foundation of the State Key Laboratory of Urban and Regional Ecology of China

4210714720173882019FY100603SKLURE2021-2-5

2023

微生物(英文)

微生物(英文)

ISSN:
年,卷(期):2023.2(1)
  • 62