首页|改进星鸦优化算法的无刷直流电机控制研究

改进星鸦优化算法的无刷直流电机控制研究

扫码查看
针对无刷直流电机双闭环控制系统存在响应速度慢、控制精度低等问题,标准的星鸦优化算法(NOA)收敛速度较慢,研究一种改进星鸦优化算法(INOA)优化PID控制器参数整定策略.利用佳点集初始化种群,丰富星鸦种群多样性;加入随机惯性权重,用于平衡INOA的探索与开发;运用透镜成像反向学习策略对最优解进行贪婪学习,扩充最优解区间.选取 4 组基准测试函数对INOA性能进行评估,进一步证明改进算法的有效性和可行性.在空载、突加转速和突加负载 3 种条件下进行仿真实验,仿真结果表明,相较于传统PID控制与模糊PID控制,采用改进星鸦优化算法的PID调速系统转速响应更快、控制精度更高.
Research on Brushless DC Motor Control with Improved Nutcracker Optimization Algorithm
Aiming at the problems of slow response speed and low control accuracy in the dual closed loop control system of brushless DC motor,and the slow convergence speed of the standard nutcracker optimization algorithm(NOA),an improved nutcracker optimization algorithm(INOA)and optimized PID controller parameter tuning strategy was studied.The population was initialized using the best point set to enrich the diversity of the nutcracker population,random inertia weights were added to balance the exploration and development of the INOA,lens imaging reverse learning strategy was used to perform greedy learning on the optimal solution and expand the optimal solution interval.Four sets of benchmark test functions were selected to evaluate the performance of the INOA,further demonstrating the effectiveness and feasibility of the improved algorithm.Simulation experiments were conducted under three conditions:no-load,sudden increase in speed,and sudden increase in load.The simulation results showed that compared to traditional PID control and fuzzy PID control,the PID speed control system using the improved nutcracker optimization algorithm had a faster speed response and higher control accuracy.

brushless DC motor(BLDCM)nutcracker optimization algorithm(NOA)best point collectionrandom inertia weightlens imaging reverse learning strategyspeed control

王博、李昕涛、王珂、石磊、常达

展开 >

太原科技大学 电子信息工程学院,太原 030024

重型机械教育部工程研究中心,太原 030024

无刷直流电机 星鸦优化算法 佳点集 随机惯性权重 透镜成像反向学习策略 转速控制

2025

微特电机
中国电子科技集团公司第21研究所

微特电机

影响因子:0.332
ISSN:1004-7018
年,卷(期):2025.53(1)