首页|基于LOFUnet深度卷积神经网络低序级断层多属性识别方法

基于LOFUnet深度卷积神经网络低序级断层多属性识别方法

扫码查看
低序级断层控制圈闭及油气富集,对油气勘探开发具有重要的意义.但其识别描述难度大、效率低,严重制约了该类油藏的勘探开发进程.随着人工智能的发展,深度学习为低序级断层识别提供了新的途径.这里在样本集构建及方法上都有创新之处:建立了同相轴错动、扭动、微扭动地震响应特征的低序级断层样本集,为智能识别奠定了良好的样本库;LOFUnet网络是在UNet基础上进行的改进,可以获取样本中更多低序级断层信息的特征.笔者通过方差属性、倾角属性和振幅属性融合获得新的断层体,用构建的LOFUnet网络进行低序级断层识别.网络通过残差块构建编码器端可以获取更多的低序级断层特征,解决梯度消失问题,提高模型的收敛速度,增强模型的稳定性以及低序级断层检测的精度和效率.选用正演模拟数据和实际地震数据分别对UNet模型、LOFUnet模型进行测试,结果表明,基于LOFUnet深度卷积神经网络低序级断层多属性识别方法提取的信息更加丰富,提高了低序级断层识别的准确度.
Multi-attribute recognition method for low-order faults based on LOFUnet deep convolutional neural network
Low-order faults control traps and hydrocarbon enrichment,which are significant for oil and gas exploration and development.However,its identification and description are complicated and inefficient,which seriously restricts such res-ervoirs'exploration and development process.With the development of artificial intelligence,deep learning provides a new way to identify low-order faults.LOFUnet network is an improvement based on UNet,which can obtain more features of low-order fault information in the sample.In this paper,a new fault body is obtained through the fusion of variance attribute,dip attribute,and amplitude attribute,and the LOFUnet network is constructed to identify low-order faults.The network in this paper can obtain more low-order fault features at the encoder end,solve the problem of gradient disappearance,improve the model's convergence speed,enhance the model's stability,and improve the accuracy and efficiency of low-order fault detec-tion.The forward simulation and actual seismic data are used to test the UNet and LOFUnet models,respectively.The results show that the multi-attribute recognition method of low-order faults based on the LOFUnet depth convolution neural net-work can extract more information and improve the accuracy of low-order fault recognition.

low-order faultUnet networkLOFUnet networkmulti-attribute identificationmodel calculation

马玉歌、苏朝光、丁仁伟、颜世磊、张玉洁、韩天娇、闫绘栋

展开 >

中国石化胜利油田分公司物探研究院,东营 257022

山东科技大学 地球科学与工程学院,青岛 266590

低序级断层 Unet网络 LOFUnet网络 多属性识别 模型试算

中国石化项目

YKY2405

2024

物探化探计算技术
成都理工大学 中国地质科学院物化探研究所

物探化探计算技术

CSTPCD
影响因子:0.398
ISSN:1001-1749
年,卷(期):2024.46(3)
  • 35