首页|基于LSTM的半航空瞬变电磁资料去噪方法研究

基于LSTM的半航空瞬变电磁资料去噪方法研究

扫码查看
随着干扰电磁环境的因素越来越多,半航空瞬变电磁数据所含噪声的特性难以正确地处理和分析,而去噪是提高瞬变电磁场信号处理和分析精度的重要手段之一.相较于传统的去噪方法大都依赖频率特征、耗时较长以及计算参数难以确定,LSTM(Long Short-Term Memory)神经网络不依赖频率特征的同时能够很好地处理非线性时间序列.因此笔者将LSTM应用于半航空瞬变电磁数据处理,在一维正演数据添加各类噪声的基础上,分为训练和测试,训练采用监督学习方式进行,从而捕获信号的特征和结构信息,测试阶段也采用监督学习方式进行,利用有标签训练数据对网络进行优化进一步提高去噪效果.最后将测试效果良好的模型应用于实际资料中,结果表明此方法能够有效地去除晚期道中的噪声,是一种能够用于半航空瞬变电磁数据去噪的可行手段.
Study on the noise reduction method for semiaerial transient electromagnetic data based on LSTM
With the increasing number of factors interfering with the electromagnetic environment,it is difficult to correct-ly process and analyze the characteristics of noise contained in semi-aerial transient electromagnetic data,and denoising is one of the critical means to improve the accuracy of transient electromagnetic signal processing and analysis.Compared to traditional denoising methods,which mostly rely on frequency characteristics,take a long time,and are challenging to determine compu-tational parameters,LSTM(Long Short-Term Memory)neural networks can handle nonlinear time series well while not relying on frequency characteristics.Therefore,this article applies LSTM to semi-autonautical transient electromagnetic data process-ing.Based on adding various types of noise to one-dimensional forward modeling data,it is divided into training and testing.The training uses unsupervised learning methods to capture signal characteristics and structural information.In the testing phase,supervised learning methods are used to optimize the network using labeled training data to improve the noise removal effect further.Finally,a model with good test results is applied to practical data,and the results show that this method can ef-fectively eliminate noise at the end of the channel and is a feasible method that can be used for noise removal in semi-aerial tran-sient electromagnetic data.

LSTM networksemiaerial transient electromagneticdenoisingtrainingtesting

张先承、毛立峰、杨逸、周子钧

展开 >

成都理工大学地球勘探与信息技术教育部重点实验室,成都 610059

LSTM网络 半航空瞬变电磁 去噪 训练 测试

国家自然科学基金重点项目

41974158

2024

物探化探计算技术
成都理工大学 中国地质科学院物化探研究所

物探化探计算技术

CSTPCD
影响因子:0.398
ISSN:1001-1749
年,卷(期):2024.46(4)