首页|基于DNN的二维抛物方程电波传播修正模型

基于DNN的二维抛物方程电波传播修正模型

扫码查看
针对二维抛物方程(Two-dimensional Parabolic Equation,2DPE)只能对二维通信链路进行建模,无法计算电磁波在城市环境下对建筑物的横向绕射和后向反射效应的缺陷,提出一种基于深度神经网络(Deep Neural Network,DNN)的 2DPE修正模型.通过数字高程地图建立城市建筑物三维模型,提取出传播距离、传播角度和建筑覆盖率等 7 个特征,对传播路径上的建筑物分布和收发天线的部署情况进行表征.结合实测数据,构建用于修正 2DPE的数据集;通过 DNN进行训练,构建 2DPE的修正模型,使其适用于复杂三维环境下的电波传播预测.仿真结果表明,相比于线性回归、支持向量回归和决策树模型,基于 DNN的 2DPE修正模型在三维传播环境中计算精度高,在测试集上的预测误差最多降低了46.8%.
Two-dimensional Parabolic Equation Correction Model Based on DNN for Radio Wave Propagation
To overcome the defect that Two-dimensional Parabolic Equation(2DPE)can only model two-dimensional communication links without considering lateral diffraction and backward reflection of electromagnetic waves near buildings in urban environment,a modified 2DPE model based on Deep Neural Network(DNN)is proposed.The three-dimensional model of urban buildings is built through digital elevation map,from which seven characteristics such as propagation distance,propagation angle,and building coverage are extracted to characterize the distribution of buildings on the propagation path and the deployment of transceiver antennas.Then combined with the measured data,the dataset for correcting 2DPE is constructed;through the training of DNN,the modified model of 2DPE is constructed to make it suitable for the prediction of radio wave propagation in a complicated three-dimensional environment.The simulation results show that compared to linear regression,support vector regression,and decision tree model,the calculation accuracy of the 2DPE correction model based on DNN is high in the three-dimensional propagation environment,and the prediction error on the test set is reduced by a maximum of 46.8%.

radio wave propagationurban environment2DPEmachine learning

薛瑞、冯菊、田茂源、刘屹然

展开 >

西南交通大学电磁场与微波技术研究所,四川成都 610031

电波传播 城市环境 二维抛物方程 机器学习

四川省自然科学基金国家自然科学基金国家自然科学基金

2022NSFSC04946180140562271416

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(1)
  • 18