首页|基于改进YOLOv5的雾霾天气下行人车辆检测算法

基于改进YOLOv5的雾霾天气下行人车辆检测算法

扫码查看
针对雾霾天气下拍摄到的图像退化模糊,难以进行准确识别与检测的问题,提出一种基于YOLOv5s改进的雾霾天气下行人与车辆检测算法.在图像预处理部分采用暗通道去雾算法,提高模型对特征的可分辨性与鲁棒性;在主干网络中采用基于自注意力机制的BoT3模块替换CSP2_1模块,提高模型对全局特征的提取能力;在主干网络输出端加入轻量化混合注意力机制(Hybrid Attention Module,HAM),增强模型对重要特征的捕获能力;在预测部分采用Wise-IOU损失函数替换CIOU损失函数,提高模型收敛效率,加快收敛速度.实验结果表明,在自建的雾霾天气行人车辆检测数据集中,改进算法相比于YOLOv5s,模型的检测精度提高了 4.13%,单张图片的检测时间为18.8 ms.改进后的算法提升效果明显,基本可以满足雾霾天气下对行人与车辆的检测要求.
Pedestrian and Vehicle Detection Algorithm Based on Improved YOLOv5 in Haze Weather
Degraded and blurred images captured in hazy weather makes it difficult to perform accurate recognition and detection.To solve this problem,a YOLOv5s-based improved algorithm for pedestrian and vehicle detection in hazy weather is proposed.The proposed algorithm uses a dark channel defogging algorithm in the image pre-processing part to improve the discriminability and robustness of the model to features.The BoT3 module based on the self-attentive mechanism is used to replace the CSP2_1 module in the backbone network to improve the model's ability to extract global features.A lightweight Hybrid Attention Module(HAM)is added to the output of the backbone network to enhance the model's ability to capture important features.The Wise-IOU loss function is used to replace the CIOU loss function in the prediction part to improve the model convergence efficiency and accelerate the convergence speed.The experimental results show that the improved algorithm improves the detection accuracy of the model by 4.13%compared with YOLOv5s in the self-built hazy weather pedestrian-vehicle detection dataset,and the detection speed of a single image is 18.8 ms.This indicates that the improved algorithm has a significant improvement effect and can basically meet the requirements for pedestrian and vehicle detection in hazy weather.

YOLOv5pedestrian detectionobject detectionloss function

张淑卿、王亚超、肖寒

展开 >

华北理工大学 电气工程学院,河北 唐山 063210

YOLOv5 行人检测 目标检测 损失函数

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(2)
  • 1
  • 8