首页|基于语义协同指导的小样本语义分割算法

基于语义协同指导的小样本语义分割算法

扫码查看
针对单个或少量多个原型不足以表示整张图像中的目标信息,提出了一种基于语义协同指导的小样本语义分割算法.利用一组共享权重的特征提取器将图片映射到深度特征空间,并借助支持图片的真实掩码过滤掉目标的背景区域;利用Vision Transformer细粒度地将深度特征直接抽象为表示目标信息的多个原型,并在此基础上引入目标类的语义信息作为辅助学习任务;利用一种无参数的度量学习算法计算查询特征和原型之间的相似度值,根据计算结果逐像素地指导查询图片中未知新类的分割.在开源的PASCAL-5i和COCO-20i数据集上进行测试,所提模型在1-shot和5-shot任务上均取得了具有竞争力的分割结果,与当前主流算法相比,具有更好的分割性能.
Few-shot Semantic Segmentation with Semantic Collaboration Guidance
The single or a small number of multiple prototypes is insufficient to represent the target information in the whole image.A few-shot semantic segmentation with semantic collaboration guidance is proposed.Firstly,feature extractor with shared weights is used to map the image into the deep feature space and filter out the background regions of the target with the help of the ground truth mask of the support image.Vision Transformer is then used to abstract the depth features directly into multiple prototypes representing the target information in fine granularity.On top of this,semantic information of the target class is introduced as an auxiliary learning task.Finally,a non-parametric metric learning module is used to calculate the similarity values between the query features and the prototypes,and the results are used to guide the pixel-level segmentation for unseen novel classes in the query image.The proposed model is evaluated on the PASCAL-5i and COCO-20i datasets,and results show that the proposed model can achieve competitive segmentation performance on both 1-way 1-shot and 1-way 5-shot settings,with better segmentation performance compared to current mainstream methods.

few-shot semantic segmentationsemantic collaboration guidanceVision Transformernon-parametric metric learning

王晨、王伟

展开 >

河北对外经贸职业学院,河北 秦皇岛 066311

北京邮电大学信息与通信工程学院,北京 100080

小样本语义分割 语义协同指导 Vision Transformer 无参数度量学习

国家自然科学基金

62072049

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(2)
  • 4