首页|基于分组注意力和高斯多尺度的目标检测方法研究

基于分组注意力和高斯多尺度的目标检测方法研究

扫码查看
针对现有目标检测网络在特征提取以及多尺度融合方面存在的局限,将分组卷积与高斯金字塔引入深层神经网络中,设计了一种基于分组注意力机制和高斯多尺度融合的目标检测方法.该方法利用图像灰度化、直方图均衡化丰富输入信息,降低光照影响;构建双阶段特征提取结构,采用深度可分离卷积初步提取目标特征后再利用分组注意力结构提升关键信息权重,进一步提炼目标特征;为充分捕获目标多尺度信息,设计了高斯多尺度结构,将不同维度的特征自适应融合后构建高斯金字塔特征,与对应尺度特征联合实现目标检测.通过在ImageNet、MS COCO、PASCAL VOC三个公开标准数据集上的实验结果表明,所提方法目标信息丰富,有效特征提取以及网络尺度不变性都有较大改善,在复杂场景下也具有较高的鲁棒性和泛化能力.
Research on Object Detection Method Based on Group Attention and Gaussian Multi-scale
In view of the limitations of the existing object detection networks in feature extraction and multi-scale fusion,the group convolution and Gaussian pyramid are introduced into the deep neural network,and an object detection method based on group attention mechanism and Gaussian multi-scale fusion is designed.This method uses image graying and histogram equalization to enrich the input information and reduce the influence of illumination;Secondly,a two-stage feature extraction structure is constructed,the object features are initially extracted by deep separable convolution,and then the weight of key information is enhanced by group attention structure to further refine the object features;At the same time,in order to fully capture the multi-scale information of the object,a Gaussian multi-scale structure is designed.The Gauss pyramid feature is constructed by using adaptive fusion of different scale features,and then the object detection is realized jointly with the corresponding scale features.The experimental results on ImageNet,MS COCO and PASCAL VOC datasets show that the proposed method has a great improvement in object information enrichment,effective feature extraction and network scale invariance,and also has high robustness and generalization ability in complex scenarios.

object detectiondeep neural networktwo-stage feature extractiongroup attentionGaussian multi-scale

邓续方、吴强、周文正

展开 >

河南林业职业学院信息工程系,河南洛阳 471002

郑州大学信息工程学院,河南郑州 450001

中国空间技术研究院西安分院,陕西西安 710100

目标检测 深层神经网络 双阶段特征提取 分组注意力 高斯多尺度

国家自然科学基金

62101501

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(2)
  • 5