首页|基于孪生网络的铁路复杂场景目标跟踪算法

基于孪生网络的铁路复杂场景目标跟踪算法

扫码查看
在铁路交通场景应用环境下,目标跟踪易受背景杂乱、目标剧烈运动和尺度变换等因素影响,容易出现目标跟踪精度不够导致目标丢失的问题.因此,提出了一种基于孪生网络的铁路复杂场景目标跟踪算法.在特征提取阶段,采用一种对ResNet网络改进的CIResNet-22作为特征提取主干网络,将传统互相关替换为逐像素互相关;加入一种基于标准化的注意力机制,网络能够注重可靠特征的同时,弱化不可靠特征;根据平均峰值相关能量所反映的结果来判断跟踪结果是否可靠,并使用一种改进的UpdateNet子网络预测最佳模板作为参考模板.实验结果表明,在VOT2018和VOT2016以及OTB100这几个标准数据集上能够获得较好的跟踪效果.同时在自制的视频序列中进行跟踪序列测试,效果良好.
Object Tracking Algorithm for Railway Complex Scenes Based on Twin Network
In the application environment of railway traffic scenes,object tracking is easily affected by background clutter,intense object motion,scale transformation and so on.It is easy to lose the object due to inadequate object tracking accuracy.Therefore,an object tracking algorithm based on twin networks is presented for complex railway scenes.Firstly,in the feature extraction phase,CIResNet-22,which is an improved ResNet network,is used as the feature extraction backbone network,replacing the naive correlation with pixel-wise correlation.Secondly,a normalization-based attention module is added,which enables the network to focus on reliable features while weakening unreliable ones.Finally,the results reflected by the average peak correlation energy are used to determine whether the tracking results are reliable,and the best template predicted by an improved UpdateNet subnetwork is used as a reference template.The results show that good tracking performance can be obtained on standard datasets such as VOT2018,VOT2016 and OTB100.At the same time,the tracking sequence is tested in the self-made video sequence with good results.

object trackingtwin networkattention moduletemplate updaterailway complex scenes

沈笑天、党建武、王阳萍、雍玖

展开 >

兰州交通大学 电子与信息工程学院,甘肃兰州 730070

轨道交通信息与控制国家级虚拟仿真实验教学中心,甘肃兰州 730070

目标跟踪 孪生网络 注意力机制 模板更新 铁路复杂场景

国家自然科学基金教育部人文社会科学研究项目&&

6206700621YJC880085YDZX20206200003492

2024

无线电工程
中国电子科技集团公司第五十四研究所

无线电工程

影响因子:0.667
ISSN:1003-3106
年,卷(期):2024.54(2)
  • 2